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1 Introduction

The Standard Model (SM) interactions are the same for particles and antiparticles,

except for the small CP violating phase in the CKM matrix (and possibly a tiny θ-

angle). Yet, everything we see around us is made of matter. Cosmic rays are consistent

with matter primaries. There seem to be no anti-matter regions in the universe, as

we would have seen gamma-rays from the boundaries from annihilating matter and

antimatter.

The asymmetry between matter and antimatter, or between baryons and anti-

baryons, is characterized by the ratio of densities of baryon number and entropy (s =
2π
45
g∗sT

3); this ratio has been determined by two independent methods

Yb =
nb − nb̄

s
=

1

7.04

nb − nb̄

nγ

=

{
8.2− 9.4× 10−11 BBN

8.65± 0.09× 10−11 CMB
(1.1)

with nb̄ ≈ 0. For every 1010 photons in the universe there is one baryon. During

adiabatic expansion of the universe dS = 0 and the ratio Yb remains constant.

Big bang nucleosynthesis (BBN) is the period where the light elements, such as

deuterium, helium and lithium, are formed. The priomordial abundances of these

elements, which can be observed in todays universe, depend sensitively on the ratio of

baryons to photons at BBN. Energetic photons can dissociate light elements, and the

larger η the earlier BBN starts. The amount of baryons can be extracted from cosmic

microwave background measurements as follows. Over densities grow under the action

of gravity, and eventually collapse. The collapse is reverted by the photon pressure of

the plasma, and this leads to the accoustic oscillations observed in the CMB spectrum.

The baryons provide the mass for the collapsing and expanding matter, whereas the

photons provide the pressure, and the amount of baryons thus influence the height of

the accoustic peaks.

The asymmetry cannot be an initial condition of the universe if inflation took

place. Inflation erases all initial information. During inflation the universe grows by

an enormous amount (larger than af/ai = e3N with N ≳ 50) and all number densities

drop to zero as they are suppressed by the volume factor. So at then end of inflation the

universe is basically empty and filled with false vacuum energy. Somewhere between

the end of inflation and today the baryon asymmetry must have been created.

There are many baryogenesis scenarios that provide a dynamical origin for the

baryon assymetry on the market: GUT baryogenesis, baryogenesis from primordial

black holes, Affleck-Dine (AD) baryogenesis, baryogenesis at preheating, baryogenesis

via leptogenesis, spontaneous baryogenesis, gravitational baryogenesis, defect medi-

ated baryogenesis, B-ball baryogenesis, baryogenesis from CPT breaking, baryogenesis
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through quantum gravity, axiogenesis, baryogenesis by brane collision, mesogenesis,

electroweak baryogenesis, etc. And many of these are collective names for whole classes

of models and implementations.

Arguably the best motivated scenario is leptogenesis, as it only requires the addition

of right-handed neutrinos on top of the SM, which are anyway needed to give the neu-

trinos a mass. Unfortunately, in the standard vanilla implementation the right-handed

neutrinos are heavy and out of reach of experiments. One of the few scenarios that can

be tested and falsified is electroweak (EW) baryogenesis, which requires new physics at

the EW scale, and thus can be probed by colliders, precision EDM experiments and,

in the future, gravitational wave observations.

Plan of the lectures:

• Sakharov conditions

• Leptogenesis

• Electroweak baryogenesis

1.1 References

All references are missing from this notes. I’ll list here some references to review

papers, in which all references to the original literature can be found. Review papers

on baryogenesis are [1, 2, 2, 3], on leptogenesis [4–6], on thermal field theory [7, 8], on

tunneling [9] and on electroweak baryogenesis [10–12].

2 Sakharov conditions

Sakharov was the first to describe a dynamical baryogenesis mechanism, and his paper

from 19671 contains three neccesary conditions for any baryogenesis scenario.

1. Baryon number violation. If all reactions/processes have as many baryons in the

initial as in the final state, no asymmetry will be created.

2. C and CP violation. C violation is needed, else the rate for particle creation is

the same as that for antiparticle creation. CP violation is needed, else the rate

for left-chiral particle creation is the same as that for right-chiral antiparticles.

1In those days baryon number was thought to be a good quantum number and the asymmetry

was explained as an initial condition of the universe. This changed with the realization of the chiral

anomaly, GUT theories, and black hole evaporation – which all lead to baryon number violation – and

the theory of inflation. Sakharov’s paper was not cited until 1979.
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3. Departure from thermal equilibrium. If all the particles in the universe remain

in thermal equilibrium, then no preferred direction for time can be defined.

Baryon number is odd under C and CP. A non-zero expectation value ⟨B⟩ requires
that the Hamiltonian H violates both C and CP. Let’s see this explicitly in the SM. The

SM is classically invariant under the global U(1) transformation q(x) → eiϵ/3q(x) and

q̄(x) → e−iϵ/3q̄(x) for the quarks and antiquarks (and all other fields do not transform).

Noether’s theorem gives the associated baryon current and charge

∂µJB
µ = ∂µ

∑
q

1

3
q̄γµq = 0 ⇒ B =

∫
d3x JB

0 (x) =
∑
q

1

3

∫
d3x q̄γ0q, (2.1)

The quark fields transfrom under P and C as

Pq(x, t)P−1 = γ0q(−x, t),

Cq(x, t)C−1 = −iγ2q∗(x, t),
(2.2)

with γ0, γ2, and γ5 = iγ0γ1γ2γ3 the Dirac matrices. The expressions on the rhs

γ0q(−x, t) and iγ2q∗(x, t) satisfy the Dirac equation with respectively momentum and

charge flipped; the overall sign is a phase convention. Then q†q transforms as

Pq†(x, t)q(x, t)P−1 = q†(−x, t)q(−x, t), (2.3)

Cq†(x, t)q(x, t)C−1 = (−iγ2q(x, t))T (−iγ2q∗(x, t)) = qT (x, t)q∗(x, t)

= −(q†(x, t)q(x, t))T = −q†(x, t)q(x, t) (2.4)

where the sign on the last line enters from interchanging fermion fields. Since baryon

number is obtained integrating q†q over spatial coordinates, it follows that baryon

number is even under P and odd under C

PBP−1 = B, CBC−1 = −B. (2.5)

The need for deviation of thermal equilibrium can be proven as follows. Note

first that the baryon expectation value in thermal equilibrium ⟨B(t)⟩T = tr(ρB(t))

is constant in time; here ρ = e−H/T is the density operator. Using the unitary time

evolation operator we then have

⟨B(t)⟩T = tr(e−H/T eiHtB(0)e−iHt) = tr(e−iHte−H/T eiHtB(0)) = ⟨B(0)⟩T (2.6)

Now B(0) is even under T (as X(t)
T→ X(−t)), and as we saw in eq. (2.5) odd under

CP. It is thus odd under Θ = CPT . In thermal equilibrium we then find that B(t)
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must vanish

⟨B(t)⟩T = tr(e−H/TB(0)) = tr(Θ−1Θe−H/TB(0)) = tr(e−H/TΘB(0)Θ−1) = −⟨B(t)⟩T ,
(2.7)

where we used that the Hamiltonian is CPT invariant.

It is subtle how baryon number vanishes in thermal equilibrium. Consider the

baryon number violating decay X → qq. If C and CP are violated the decays rates of

X and X̄ differ

Γ(X → qq) = Γ0(1 + ϵ), Γ(X̄ → q̄q̄) = Γ0(1− ϵ) (2.8)

The decays generate a non-zero baryon number. One might think that using detailed

balance, that the inverse decay qq → X is more likely than q̄q̄ → X̄, thus erasing

baryon number. However, detailed balance is based on T invariance, which is broken in

the presence of CP violation (by CPT invariance), and cannot be used. In fact, CPT

tells that the inverse decays are

Γ(qq → X) = Γ0(1− ϵ), Γ(q̄q̄ → X̄) = Γ0(1 + ϵ), (2.9)

exactly the opposite. How then is baryon number restored?

Well, B violation tells that there should be a competing decay channel X → Y

with Y having different baryon number than the quark pair; otherwise we could simply

assign X the same baryon number as the quark pair, and B is not violated in the decay.

CPT assures that the total decay rate of X and X̄ are the same

Γ(X → qq) + Γ(X → Y ) = Γ(X̄ → q̄q̄) + Γ(X̄ → Ȳ ) (2.10)

The additional Y ↔ qq interactions then wash out the asymmetry.

2.1 Sakharov conditions in the SM

2.1.1 Review of the SM

We begin by defining the SM Lagrangian. We write the Lagrangian in terms of left

handed quark and lepton doublets, qL, and, lL, respectively, and right-handed singlets

uR, dR, and eR. The field H represents the SUL(2) Higgs doublet of scalar fields

Ha. We define H̃a = ϵabHb∗, where ϵab is the antisymmetric tensor in two dimensions

(ϵ12 = +1). The covariant derivative is given by

Dµ = ∂µ − i
gs
2
Ga

µλ
a − i

g

2
W i

µτ
i − ig′Y Bµ , (2.11)

where gs, g, and g
′ are, respectively, the SUc(3), SUL(2), and UY (1) coupling constants.

λa/2 and τ i/2 denote SU(3) and SU(2) generators, in the representation of the field on
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which the derivative acts. The hypercharge assignments, Y , are 1/6, 2/3, −1/3, −1/2,

−1, and 1/2 for qL, uR, dR, lL, eR, and H, respectively. The field strengths are

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW j

µW
k
ν ,

Bµν = ∂µBν − ∂νBµ , (2.12)

with fabc and ϵijk denoting the SU(3) and SU(2) structure constants.

The SM Lagrangian is then written as

LSM = (DµH)†DµH − λ(H†H − 1

2
v2)2 −

(
q̄LYuH̃ uR − q̄LYdH dR + l̄LYeH eR + h.c.

)
− 1

4

(
Ga

µνG
aµν +W i

µνW
i µν +BµνB

µν
)
+
∑

ψ̄i /D ψ. (2.13)

where the sum in the last term is over all fermions ψ = {qL, uR, dR, lL, eR}. The

terms on the first line are the Higgs kinetic term, the Higgs potential, and the yukawa

interactions, whereas the 2nd line gives the kinetic terms for the gauge fields and the

fermions. We parameterize the Higgs doublet

H =
1√
2

(
θ2 + iθ3

ϕ+ h+ iθ1

)
(2.14)

with ϕ the classical background, and h and θi the Higgs and Goldstone boson fluctua-

tions. Expanding around the background L(0) gives the classical potential

V0 = −L(0) =
λ

4
(ϕ2 − v2)2 (2.15)

with µ2 = λv2. The potential is minimized at ϕ0 = v = 246GeV. The vacuum Higgs

mass ∂2V |ϕ=v = m2
ϕ = 2λv2 = (125GeV)2, from which it follows λ = 1

2
(mH/v)

2 ≈ 0.12.

The classical Higgs background breaks the EW symmetry and gives masses to the

EW bosons. This can be seen by working out the covariant derivatives of the Higgs

field kinetic term

L ⊃ (DµH)(DµH)† =
1

2

(
0 ϕ
)
(gW a

µ τ
a +

1

2
g′Bµ)(gW

bµτ b +
1

2
g′Bµ)

(
0

ϕ

)
+ ...

=
1

2

ϕ2

4

[
g2(W 1)2 + g2(W 2)2 + (−gW 3 + g′B)2

]
=
ϕ2

4

[
(g2 + g

′2)
1

2
Z2 + g2W+W−] (2.16)
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We defined the mass eigenstates

Z =
1√

g′2 + g2
(gW3 − g′B), Aγ =

1√
g′2 + g2

(gW3 + g′B), W± =
1√
2
(W 1 ∓W 2)

(2.17)

with masses

{mZ ,mW ,mγ} = {
√
g′2 + g2

ϕ

2
, g
ϕ

2
, 0} (2.18)

We can rewrite the gauge interactions in the fermion kinetic terms in terms of the

gauge boson mass eigenstates

LSM ⊃
∑

ψ̄i /D ψ = g(W+
µ J

µ+
W +W−

µ J
µ−
W + ZµJ

µ
z ) + eAµ

γJ
µ
EM + ... (2.19)

with e = gg′/
√
g2 + g′2 the electric charge. The currents are

Jµ+
W =

1√
2
(ν̄Lγ

µeL + ūLγ
µdL), Jµ−

W =
1√
2
(ēLγ

µνL + d̄Lγ
µuL)

Jµ
Z = cos−1 θW

∑
f

qZf f̄γ
µf, Jµ

EM =
∑
f

qEMf f̄γµf, (2.20)

with cos θW = g/
√
g2 + g′2 and qZ , qEM the Z and electric charges of the fermions.

Fermion masses arise from the yukawa interactions. In the Higgs background

L ⊃ −
(
q̄LYuH̃ uR + q̄LYdH dR + l̄LYeH eR + h.c.

)
= −

(
1√
2
YuϕūLuR +

1√
2
Ydϕd̄LdR +

1√
2
YeϕēLeR + h.c.

)
+ ... (2.21)

In the SM there are no right-handed neutrinos and the neutrinos are massless. We

come back to this in the leptogenesis section.

Let’s focus on the quarks. For three generations ui = (u, c, t) and di = (d, s, b)

and the yukawa matrices YI with I = u, d are general complex 3× 3 matrices. We can

diagonalize by a bi-unitary transformation

YI = UIY
D
I W

†
I , I = u, d (2.22)

with U,W unitary matrices. Squaring we see that YIY
†
I = UI(Y

D
I )2U †

I , and Y D
I are

the positive square roots of this equation. The masses of the quarks can be made real

by a chiral rotation; we will return to this in section 2.1.3. Now make the change of

variables

uiR → ui
′
R = W ij

u u
i
R, uiL → ui

′
L = U ij

d u
i
L (2.23)
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and likewise for the d-fields. This transformation thus diagonalizes the quark mass

matrix for the Lagrangian written in terms of the primed fields. The primed field are

the mass eigenstates and the orginal fields are the flavor eigenstates. QCD, EM and

the Z-interactions are diagonal in flavor space and do not mix uR and dR, and also

not uL and dL. Rewriting the fermion currents in terms of the primed fields, only

W †
IWI-combinations appear and the WI rotating the right-handed fields drop out of

the lagrangian. The Ui rotating the left-handed fields likewise drop out, expcept for

the charged current interactions which mix mix uL and dL:

Jµ+ ⊃ 1√
2
ūLγ

µdL → 1√
2
ū′Lγ

µ(U †
uUd)d

′
L ≡ 1√

2
ū′Lγ

µVCKMd
′
L (2.24)

The CKM matrix VCKM = U †
uUd mixes different flavor states in the mass basis.

From now on we will work in the mass basis and drop the primes.

2.1.2 Sphalerons

The SM lagrangian is classically invariant under the global baryon and also under a

global lepton U(1) symmetry. However, at the quantum level this symmetry is broken

by the chiral anomaly, stemming from triangle diagrams, and the baryon current Jµ
B =∑

q
1
3
q̄γµq and lepton current Jµ

L =
∑

l(l̄γ
µl + ν̄lγ

µνl) are non-conserved.

If we split the current in left- and right-handed pieces f̄γµf = f̄LγµfL + f̄RγµfR
the non-conservation is

∂µf̄LγµfL = −cL
g2

32π2
F a
µνF̃

aµν , ∂µf̄RγµfR = +cR
g2

32π2
F a
µνF̃

aµν , (2.25)

with F aµν the field strength tensor and F̃ aµν = ϵµναβF a
αβ/2 the dual tensor. The

constants cL, cR depend on the representation of fL and fR. The gauge group of the

SM is is SU(3)c × SU(2)L × U(1)Y . QCD is vector-like and both chiralities couple

equally to the gluons, which gives cQCD
L = cQCD

R , and no anomaly. However the SU(2)

gauge fields only couple to left-handed fermions, and hypercharges differs for both

chiralities, giving cWR = 0 and cYL ̸= cYR. The result is

∂µJB
µ = ∂µJL

µ =
nF

32π2
(g2W a

µνW̃
aµν − g′2BµνB̃

µν), (2.26)

with W a
µν and Bµν (g and g′) the SU(2)L and U(1)Y field strengths (gauge couplings),

W̃µν = 1
2
ϵµνρσW

ρσ the dual field strength, and nF = 3 is the number of generations.

The right hand side of eq. (2.26) can be written as the divergence of a current

∂JB = nF∂µK
µ with

Kµ =
g2

32π2
2ϵµναβW a

ν (∂αW
a
β +

gw
3
ϵabcW b

αW
c
β)−

g′2

32π2
ϵµναβBνBαβ. (2.27)
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Although the r.h.s. is a total derivative it does not vanish for the non-abelian field

strength. For the classical energy to vanish at infinity, the corresponding field strength

should vanish. For hypercharge this givea Bµ = 0 and it does not contribute; however

for a non-abelian gauge field eq. (2.12) this gives 2∂αW β
a = gϵabcW

bαW cβ, which yields

a non-zero contribution to Kµ. The variation of the total baryon number B =
∫
d3x J0

B

is
∆B

nf

=

∫
d3xK0|tfti =

∫
d4x(∂0K

0 − ∂iK
i) =

∫
d4x∂µK

µ ≡ ∆NCS (2.28)

where the integration is over a cylinder with radius at spatial infinity and height from ti
to tf . In the 3rd step we used Gauss law. Since ∂µK

µ is gauge invaraint we can choose

a gauge in which the divergence of the spatial current vanishes, allowing to rewrite

∂0K
0 → ∂µK

µ in 4-vector form. ∆NCS is the Chern-Simons number.

Because of the non-trivial vacuum topology of SU(2) the Chern-Simons number

is an integer. The gauge field is a map from the physical space to the manifold of

the gauge group. SU(2) and the boundary of 4D space compactified on ball both are

3-spheres, and the map can have nontrivial homotopy (characterized by the winding

number).

In more detail: the ground state corresponds to a time-independent field configura-

tion with vanishing energy density Wµν = 0, which means that the gauge field is a pure

gauge. Let’s work in temporal gauge which setsW0 = 0. The temporal gauge is a partial

gauge fixing condition, as time-independent gauge transformations U(x) leave the gauge

fixing condition W0 = 0 fixed: W0 → i
g
U(x)∂0U

−1(x) = 0. The vacuum is thus de-

scribed by the time-independent pure gauge configuration W(x) = (i/g)U(x)∇U(x)−1.

We can make use of the remaining gauge freedom to impose at spatial infinity |x| → ∞
that W = 0 by choosing U = 1. Spatial infinity with all points at infinity identified

is equivalent to S3. Hence, by imposing this last condition the gauge transformation

U(x) becomes a mapping from S3 to the gauge group2 SU(2) ∼ S3.

These mappings fall into homotopy classes categorized by integer winding numbers.

Two mappings x → U1(x) and x → U2(x) belong to the same class if there exists

a continuous transformation from U1(x) to U2(x), which correspond to small gauge

transformations, ie gauge transformations that can be continuously deformed to the

identity transformation. Mappings in different homotopy classes correspond to distinct

vacua, which are related by a large gauge transformation. The general configuration of

2The most generic 2 × 2 unitary matrix with determinant equal to unity may be expressed as

a1 + ibiσ
i with the condition a2 + |b|2 = 1. Therefore the topology is SU(2) ∼ S3.
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Figure 1. Sphalerons. Top: Feynman diagram for effective sphaleron interaction. Bottom:

Energy of gauge field configurations as a function of Chern-Simons number. From [1].

the different vacua is given by (up to small gauge transformations)

U(x) = exp

(
iπx · σ√
|x|2 + λ2

n

)
(2.29)

with n = Ncs the winding number, and λ an arbitrary scale parameter.

As follows from eq. (2.26), in the SM the combination B-L is conserved ∂µ(JB
µ −

JL
µ ) = 0, while B+L is broken ∂µ(JB

µ + JL
µ ) ̸= 0. The different vacua of the theory are

charachterized by the Chern-Simons number NCS. To transition between them costs

a finite energy density, see the bottom plot in fig. 1. To find the height of the barrier

between inequivalent vacua, one can construct the explicit solution that interpolates

between the vacuum and the top of the barrier. This is the sphaleron solution, which

is Greek for ’ready to fall’, as the top of the barrier is an unstable state. The energy
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of the sphaleron is found to be

Esph = f(λ/g)
4πϕ

g
, f(λ/g) ∼ 2. (2.30)

with ϕ(T ) the temperature dependent vev in the minimum.

At zero temperature the transition can only go via quantum mechanical tunnel-

ing, the tunneling action is non-perturbative and proportional to g−2, and the rate is

exceedingly small
Γ

V
∼ e−8π2/g2 ∼ 10−185. (2.31)

This assures the stability of the proton. At finite temperature the thermal fluctuations

may get the fields on top of the barrier, and it can then roll to the next vacuum. At high

temperature T ≳ mW there is no barrier (before EW phase transition) and transitions

are fast, on dimensional grounds

Γsph

V
∼ 10−6T 4, T ≳ mW (2.32)

The constant of proportionality is found from lattice calculation, it is small as there

is also dependence on the small gauge coupling. At lower temperatures the rate is

Boltzmann suppressed by the energy of the sphaleron configuration, and

Γsph

V
∼ e−Esph/T , T ≲ mW (2.33)

For rates exceeding the Hubble rate, Γ > H, the sphalerons are in thermal equilib-

rium. Taking V ∼ H−3 the Hubble volume, this gives

100GeV ≤ T ≤ 1012GeV (2.34)

The sphaleron transition violates baryon and lepton number by ∆B = ∆L = ±3,

and involves quarks (with all colors) and leptons from all generations, see fig. 1 for the

effective vertex interaction. An example ∆B = ∆L = −3 transition is

u+ d→ d̄+ 2s̄+ c̄+ 2b̄+ t̄+ ν̄e + ν̄µ + ν̄τ . (2.35)

2.1.3 C and CP violation in the SM

The SU(2) gauge bosons only couple to left handed fermions, which breaks C maximally.

There are two source of CP violation in the SM, and the also the QCD phase transtion

is a 2nd order transition.

The fermion masses can be complex. This breaks CP as the yukawas transform

Y
CP→ Y ∗. However, these phases can be removed from the mass term by a global chiral
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rotation of the fermions fL → eiαfL and fR → e−iαfR. Via the chiral anomaly this

generates a contribution to the QCD theta term3

L ⊃ θ̄
g2

32π2
FµνF̃

µν , θ̄ = θ − arg det(YuYd) (2.36)

F̃ µν ∼ E ·B violates CP. The θ̄ term gives rise to a non-zero electric dipole moment of

the neutron dN = 5.2 × 10−16θ̄ e · cm < 10−26 e · cm. Hence θ̄ < 10−10 is too small for

baryogenesis.

The second source of CP violation is the CKM matrix, if VCKM contains phases

ūLγ
µVCKMW

−µdL+d̄Lγ
µV ∗

CKMW
+µuL

CP→ d̄Lγ
µVCKMW

+µuL+ūLγ
µV ∗

CKMW
−µdL (2.37)

The number of parameters in the 3 × 3 unitary matrix VCKM is 2 × 32 minus 32 real

conditions from the unitarity constraint, giving 9 real parameters. Three of those are

mixing angles, the number of parameters of a O(3) rotation, and there are 6 phases.

We can remove phases by a rotation of the quark fields

uiL → eiα
i

uiL, diL → eiα
i

diL (2.38)

The overall phase is redundant, and this removes 5 phases.

The CKM matrix thus contains one phase, which breaks CP. Commonly the

Wolfenstein parameterization is used for the CKM matrix, but where the phase re-

sides can be changed by field rotations. It follows that all three generations should be

involved in a process for CP to be violated (for two quarks the 2× 2 CKM matrix has

no phase). An invariant way to parameterize CP violation is the Jarlskog invariant

J = det[m2
u,m

2
d] with the masses in the flavor basis (before diagonalizing the mass

matrix); this parameterization is invariant under rotations of the fields. This gives

JCP =
∏
i>j
u,c,t

(m2
i −m2

j)
∏
i>j
d,s,b

(m2
i −m2

j) Im(VudVcbV
∗
ubV

∗
cd), (2.39)

Inserting the measured CKMmatrix elements gives Im (VudVcbV
∗
ubV

∗
cd) ≃ 2×10−5 sin δKM .

To get a dimensionless measure of the CP asymmetry, we can divide it by T 12
EW, as the

EW temperature is the lowest scales where sphaleron transitions occur. This gives

JCP

(100GeV)12
∼ 10−20 (2.40)

which is too small for baryogenesis.

3No theta term is generated for the SU(2) gauge fields, as they only couple to left-handed fields,

and thus we have the freedom to use rotation of the right-handed fields to remove phases in the mass

matrix.
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2.1.4 Non-equilibrium processes in the SM

We can be short. Starting with a universe at high temperature, within the SM there are

no sources for much out of equilibrium physics. The EW phase transition is a smooth

cross over.

3 Leptogenesis

In the SM the neutrinos are massless. We now know from oscillation experiments

that neutrinos have a mass. We can give a dirac mass to the neutrinos by adding

(three) right handed neutrinos (RHNs). The RHN are singlets under the SM gauge

symmetries, and therefore they can be majorana fermions, that is, they can be their

own antiparticle. This also allows to add an extra majorana mass coupling the RHNs.

This is the (type I) seesaw mechanism for neutrino masses, where the mass eigenstates

of the light active neutrinos are suppressed by the heavy mass scale of the RHN.

The majorana mass term breaks lepton number. A non-zero lepton number will

be reprocessed by the equilibrium B−L conserving sphaleron transtions in a non-zero

baryon number. In the vanilla scenario, the lepton number is generated by the out of

equilibrium decay of the (lightest) right-handed neutrino. There can be CP violating

phases in the additional couplings in the Lagrangian involving the RHNs. Then the

decay of the RHN into leptons and into anti-leptons may differ Γ(N → lH) ̸= Γ(N →
l̄H̄).

3.1 Neutrino mass

The Dirac mass couples left and right chiralities, whereas a majorana mass couples

right with right (or left with left). The terms in the lagrangian and the mass matrix

is most easily written down in terms of the neutrinos and their charge conjugates. A

Dirac neutrino transforms under charge conjugation as eq. (2.2)

CψC−1 = −iγ2ψ∗ = −iγ2γ0(ψ†γ0)T = −iγ2γ0ψ̄T (3.1)

Applying charge conjugate twice gives back the original spinor (ψc)c = −iγ2(−iγ2ψ∗)∗ =

ψ. The chirality of ψc is the opposite of the chirality ψ

γ5ψc = γ5(−iγ2γ0ψ̄T ) = −iγ5γ2ψ∗ = iγ2γ5ψ∗ = −(γ5ψ)c (3.2)

Thus the charge conjugate of a left-handed field is a right handed field and vice versa.

We can see this explicitly. Use the notation for a left and right handed neutrino

νL =

(
ψL

0

)
, νR =

(
0

ψR

)
, (3.3)
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then under charge conjugation

νL
C−→ νcL =

(
0

(iσ2ψ∗
L)

)
, νR

C−→ νcR =

(
(−iσ2ψ∗

R)

0

)
(3.4)

Thus νL and νcR are lefthanded, and νR and νcL right-handed.

Let’s now write down the Dirac mass for the neutrinos. For a real Dirac mass we

can write it in terms of the Dirac spinor ψ = νL + νR as mDψ̄ψ = mDν̄LνR + h.c.. For

a complex mass term we can start from the 2nd definition, in terms of the chiral fields,

which is general. The Dirac mass term thus is4

LDirac = −mDν̄LνR + h.c. = −
(1
2
mDν̄LνR +

1

2
mT

Dν
c
Rν

c
L + h.c.

)
= −1

2

(
νcL νR

)( 0 mT
D

mD 0

)(
νL
νcR

)
+ h.c. (3.6)

Likewise we can write down a majorana mass term for the real majorana spinor

ψ = νR + νcR as mM ψ̄ψ = mMνcRνR + h.c. and

LMajorana = −1

2
mRνcRνR + h.c. = −1

2

(
νcL νR

)( 0 0

0 mR

)(
νL
νcR

)
+ h.c. (3.7)

In the SM a majorana mass term for the left-handed neutrino, which is a part of an

SU(2) doublet, is forbidden by gauge symmetry.

A global U(1) lepton number transformation νI → eiανI with I = L,R leaves the

Dirac mass is invariant at the classical level. As νcR → eiανcR the majorana mass term

breaks lepton number explicitly LMajorana → e2iαLMajorana by ∆L = 2.

Adding dirac and majorana mass the mass matrix is

Lmass = −ψ̄LMψR + h.c., M =

(
0 mD

mT
D mR

)
(3.8)

with ψL = (νL ν
c
R)

T and ψR = (νcL νR)
T . A generic non-hermitian matrix can by

diagonalized by a bi-unitary transformation. For a symmetric matrix MT =M we get

the relation

MD = V †MU ⇒ MD =MT
D = UTMTV ∗ = UTMV ∗ ⇒ U = V ∗ (3.9)

4The relation mDν̄LνR = mT
Dν̄

c
RνL follows from

mψ̄χc = mψ†γ0(−iγ2χ∗) = −im(ψ∗)T γ0γ2χ∗ = im(ψ∗)T γ2γ0χ∗ = −imTχ†γ0γ2ψ∗ = mT χ̄ψc.

(3.5)
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with MD a diagonal matrix. To diagonalize the mass matrix we thus use

MD = U †MU∗ (3.10)

If there is a hierarchy between the mass scale of the dirac mass and the majorana masses,

the off-diagonal mixing is suppressed and we can expand in small mixing angle.5

We will eventually consider the implementation in the SM with three generations

of left-handed and nR right-handed neutrinos, but let’s for now take a single generation.

Then for small mixing

U ≈
(

1 θ

−θ† 1

)
, U †MU∗ =

(
−θmT

D −mDθ
T + θmRθ

T mD − θmR

mT
D −mRθ

T mR

)
(3.12)

up to higher order θ-corrections. Demanding the off-diagonals to vanish gives the angle

in the mixing matrix

θ = mDm
−1
R (3.13)

The light neutrino (upper left corner) and heavy neutrino (lower right corner) masses

are

mη ≈ −mDm
−1
R mT

D = −θmRθ
T , mN ≈ mR (3.14)

The mass eigenstates are majorana fermions. The rotated fields are ϕR = UTψR

and ϕL = U †ψL, and the mass eigenstates can be written as (we take θ real, as is the

case for the one generation case)

η = ηL + ηR = νL + νcL − θ(νR + νcR) = ηc,

N = NL +NR = νR + νcR + θ(νL + νcL) = N c (3.15)

As expected the light mass eigenstate is mostly the left handed state ηL ≈ νL that

enters in the weak interaction, and NR is mostly the inert νR state.

3.2 SM with right-handed netrinos

Add nR right-handed neutrinos to the SM Lagrangian eq. (2.13), with both a Dirac

and Majorana mass. The lepton sector of the Lagrangian is

L ⊃ l̄Li /D lL + ēRi /D eR +
1

2
ν̄Ri/∂ νR − (l̄LYeH eR + l̄LYνH̃ νR +

1

2
mRνcRνR + h.c.)

=
g√
2

(
W+

µ J
µ
W+ + h.c.

)
+

g

cos2 θW
ZµJ

µ
Z − (ēLYeϕ eR + ν̄LYνϕ νR +

1

2
mRνcRνR + h.c.) + ...

(3.16)

5A general unitary matrix is of the form

U =

(
a b

−b† a†

)
, |a|2 + |b|2 = 1 (3.11)
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Without loss of generality we can work in a basis in which mR is diagonal. One can

always diagonalize the 3× 3 charged lepton yukawa mass matrix me
D = Yeϕ/

√
2 via a

bi-unitary transformation lL = U l l̃L and lR = V l l̃R. The neutral current is invariant

but the charged current transforms, and Ul appears in the Lagrangian in the following

terms

L ⊃− g√
2
ν̄Lγ

µUlẽLW
+
µ − ν̄LmDν̃R + h.c. (3.17)

We can define ν̃l = Ulν̃l and m̃D = UlmD to remove Ul from the lagrangian. This is

weak interaction basis. In this basis the charged current interaction produces a charged

lepton mass eigenstate ẽl, together with a neutrino ν̃L which is a weak interaction

eigenstate. From now on we work in the weak interaction basis, and we drop the tildes.

The neutrino mass matrix is of the form eq. (3.8), with now the Dirac mass mD =

Yνϕ/
√
2 is 3×nR dimensional, and the majorana mass nR×nR. It can be diagonalized

eq. (3.10) by the matrix

U = Vblock · Vlight =
(

1 θ

−θ† 1

)(
Uη 0

0 1

)
(3.18)

Vblock block diagonalizes the mass matrix in diagonal heavy and light blocks, and Vlight
diagonalizes the light mass matrix

U †
ηmηU

∗
η = mdiag

η , (3.19)

with mη in eq. (3.14). Note that the light mass and flavor eigenstates are related

νL = UηηL and Uη is the PMNS matrix, which is the equivalent of the CKM matrix

(the mixing matrix in the charged current interactions) in the lepton sector. This is in

the weak interaction basis, where the charged lepton mass and flavor states are aligned.

3.3 Sakharov conditions in leptogenesis

Consider there RHNs with mass ordering M1 < M2 < M3. Any asymmetry produced

by the out of equilibrium decay of the heavier RHNs will be erased as the lightest state

is still in equilibrium. We are thus interested in the out of equilibrium decay of the

lightest N1 ≈ νR1 + νcR1 state.

Lepton number violation The majorana mass term for the RHNs breaks lepton

number by ∆L = 2. A non-zero initial lepton number Li is produced in the decay of

the RHN. Sphaleron transitions (approximately) wipe out B + L and conserve B − L:

(B + L)f ≈ 06 and (B − L)f = (B − L)i = −LI , which gives Bf = −Lf = −1
2
Li. A

6Only left-handed part of B − L is erased by sphalerons, not the contribution of the right-handed

particles.
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Figure 2. The diagrams contributing to the CP asymmetry ϵ.

more carefull treatment, taking into account all reactions in thermal equilibrium and

all conserved charges (e.g. hypercharge) gives Bf = c(B−L)i and Lf = (c−1)(B−L)i
with

c =
8Nf + 4NH

22Nf + 13NH

(3.20)

which gives c = 0.35 in the SM.

CP violation The decay ofN1 into leptons and antileptons is different in the presence

of CP asymmetry, which we can parameterize by

ϵ =
Γ(N1 → lH)− Γ(N1 → l̄H∗)

Γ(N1 → lH) + Γ(N1 → l̄H∗)
(3.21)

At tree level, both decays in the nominator are proportional to |M|2 ∝ |Y1α|2 and

cancel. Explicity

Γ1 =
∑
α

[
Γ(N1 → lαH) + Γ(N1 → l̄αH

∗)
]
=

1

8π
M1(Y

†Y )ii (3.22)

CP violation arises from the interference of tree level and one-loop diagrams. We

sketch here the calculation. Separate the tree and loop amplitudes in a coupling and a

matrix part

M = M0 +M1 = c0A0 + c1A1 (3.23)

For the tree level part c0 = Y ∗
α1

and A = ūlαPRuN . The CP conjugate matrix is

Mi = c∗i Āi, where in the conjugate amplitude u spinors are replaced by v spinors.

Since only the momentum part of ūu = v̄v → /p survives the traces in the cross section

calculation, we can effectively set Āi = Ai. The denominator in eq. (3.21) is dominated

by the tree level decay, the nominator comes from the interference term

|M|2 + |M̄|2 ≈ 2|c0|2|A0|2. |M|2 − |M̄|2 = 4Im(c0c
∗
1)Im(A0A∗

1). (3.24)
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The first factor contains phases in the couplings that violate C and CP. However, we

also see that a CP conserving phase is needed in Im(A0A∗
1), which can arise when the

intermediate particles H, l are on shell (N2 is too heavy to be on-shell) in the loop

diagrams. This follows from the unitarity of the S-matrix and the optical theorem.

The S matrix and amplitude are defined

⟨f |S|i⟩ = ⟨f |1− iT |i⟩ = Sfi, ⟨f |T |i⟩ = M(i→ f), (3.25)

with i, f denoting initial and final states. Unitarity S†S = 1 implies i(T − T †) = T †T .

This gives the relation

i [M(i→ f)−M∗(f → i)] =
∑
n

⟨f |T †|n⟩⟨n|T |i⟩ (3.26)

with the sum over all intermediate states. We can identify i = Ni and f = lαH. In

the limit of real couplings the lhs is proportional to Im(A1). The rhs shows the phase

arises from intermediate states n = lβH, l̄βH
∗ going on-shell. This gives

2Im(A0A∗
1) = A0

d3pβ
2Eβ(2π)3

(2π)4δ4(pβ − p∗H)A
∗
0(N → l̄′βH

∗)A∗
0(l̄

′
βH

∗ → lαH) (3.27)

In the limit that Mj ≫ M1 for j = 2, 3 one can approximate the propagator in

A∗
0(l̄

′
βH

∗ → lαH). Explicit calculation gives

ϵi ≈
3

4π

1

(Y †Y )11

∑
α

∑
j=2,3

Im
[
(Y †Y )21jYαj

]M1

Mj

(3.28)

ϵi is zero for i = j, and we can extend the summation to j = 1, 2, 3. The coupling com-

bination is genuinely CP violating if the phase cannot be removed by field redefinitions.

We come back to this shortly.

The CP asymmetry is bounded from above, which for the hierarchical mass spec-

trum of Ni can be derived as follows. We can write the phase factor in terms of the

unit vector

Ŷα =
Y1α†√
(Y †Y )11

(3.29)

and the neutrino mass matrix (mη)βα =
∑

j Y
T
βjYαjv

2/Mj as proportional to∝ Im(Ŷ TmηŶ ).

The neutrino mass matrix can be diagonalized by a bi-unitary transformation as in

eq. (3.19) U †
ηmηY

∗
η = mdiag

η . We can then rewrite

ϵ1 ∝ Im(Ŷ TmηŶ ) = Im(Ŷ TU∗
ηU

T
η mηUU

†Ŷ ) = Im(Ŷ ′Tmdiag
η Ŷ ′) =

∑
α

Im(Ŷ ′2
αmα) ≤ mmax

(3.30)
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with Ŷ ′ = U †Y and mmax is the heaviest light neutrino mass. This gives the upper

bound on |ϵ|, or equivalently lower bound on M1

|ϵ| ≲ 3M1mmax

16πv2
⇒ M1 ≳ 109GeV

(
matm

mmax

)(
|ϵ|
10−7

)
(3.31)

Let’s end this discussion with a counting of the invariant phases in the neutrino

sector. Consider the lagrangian for neutino masses in the weak interaction basis and

with diagonal right-handed neutrino masses. The yukawa coupling/Dirac mass is a

general 3×nR complex matrix with 3×nR complex parameters; the majorana mass is

diagonal and real and contains nR real parameters corresponding to the RHN masses.

Three phases can be absorbed rotating νL, but since νR is majorana they cannot be

rotated. The lagrangian thus contains 2× 3× nR + nR − 3 = 7nR − 3 real parameters,

of which 3× nR − 3 = 3(nR − 1) are phases.

At low energies the RHN can be integrated out, and the neutrino mass matrix

for the light neutrinos eq. (3.14) is symmetric. For three families, this has 6 complex

parameters. After diagonalizing the mass matrix, there are then six phases in the

PMNS matrix. Three phases can be absorbed by rotating charged leptons, (cannot

rotate the majorana neutrinos), hence three physical phases. There are then three

phases in the PMNS matrix (one dirac phase and two majorana), three mixing angles,

and three masses. If NR = 2 one of the neutrino masses is massless, and there is only

one majorana phase.

For nR = 3, in the high scale lagrangian there are 18 parameters of which 6 phases.

At low scales there are 9 parameters of which 3 are phases. There are thus 9 parameters

in the RH sector, these correspond to the 3 RHN masses, and 3 complex parameters in

the Casas-Ibarra R matrix which gives the mixing between the light and heavy sector.

Note that only 2 mass differences and 3 mixing angles are measured, hence there are

many free parameters, making a general leptogenesis analysis difficult.

For nR = 2, in the high scale lagrangian there are 11 parameters of which 3 phases.

At low scales there are 7 parameters of which 2 are phases. There are thus 4 parameters

in the RH sector, these correspond to the 2 RHN masses, and 1 complex parameters

giving the mixing between the light and heavy sector.

We can measure all phases in the light neutrino sector, but in general there is no

direct relation between these phases, and the phase that enters the lepton asymmetry

parameter ϵ important for leptogenesis.

Out of equilibrium For a relativistic particle the equilibrium number density scales

as n ∝ T 3, while it is Boltzmann suppressed in the non-relativistic limit n ∝ e−M1/T .

If the (inverse) decay rate is small the RHN cannot keep up with the equilibrium

– 19 –



density as the temperature drops below the mass, and the heavy neutrinos are not able

to follow the rapid change of the equilibrium particle distribution. The decay is out

of equilibrium; inverse decays are suppressed as the thermal bath particles have not

enough energy to produce a RHN (except in the tail of the distribution). The out of

equilibrium condition thus requires

K =
Γ1

H

∣∣∣∣
T=M1

< 1 (3.32)

with Γ1 well approximated by the three level decay eq. (3.22).

Defining the effective neutrino mass scales

m̃ =
8πv2

M2
1

Γ1 = (Y †Y )ii
v2

M1

, m∗ =
8πv2

M2
1

H(M1) ≈ 10−3 eV (3.33)

then K = m̃/m∗. Here we used that H(T ) =
√
ρ/(3MP) = π

√
g∗T

2/(3
√
10MP) with

MP = 2.4 × 1018GeV the reduced planck mass. In the SM the number of relativistic

degrees of freedom in the thermal bath at high temperature is g∗ = 106.75. The effective

neutrino mass m̃ is of the scale of the light neutrinos; one can show that the lightest

neutrino mass m1 < m̃.

3.4 Final baryon asymmetry

To calculate the lepton asymmetry one has to solve the Boltzmann equations for the

densities of the RHNs and for the leptons. We will not do that here but estimate the

result. The asymmetry depends on weather the out-of-equilibrium condition eq. (3.32)

is satisfied or not.

Consider first the strong wash out regime K ≫ 1. At T ∼ M1, a thermal number

density of N1 is obtained (nN1 ∼ nγ) independent of the initial conditions. The total

lepton number asymmetry at T ∼ M1 is effectively zero as any asymmetry made in

the production of N1 is washed out. The asymmetry in decay is washed out by inverse

decays/scattering until these reaction at T = TF drop out of equilibrium. 7 At that

time the remaining N1 density is Boltzman suppressed ∝ e−M1/TF ≈ K−1. We thus

estimate the produced baryon asymmetry

YB ∼ 0.35|YL| ∼ 10−3|ϵ1|K−1 (3.34)

with Yi = ni/s. The equilibrium number density of Ni divided by the entropy density,

which gives a factor neq
N1
/s = 135ζ(3)/(4π4g⋆) ≈ 4 × 10−3 for g∗ = 106.75. This gives

the overall coefficient above.

7At T < M1 the rate for inverse decay is ΓID ≈ 1
2ΓDe−M1/T .
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In the weak washout regime K < 1 the total decay rate is small. The final lepton

asymmetry now depends on the initial conditions. The “thermal leptogenesis” scenario

assumes that the initial N1 number density at high temperatures T ≫ M1 is zero.

Both production and decay of RHN are mediated by the same Yukawa interactions,

and if ΓD < H at T = M1 then so is Γprod < H. The RHN number density will not

reach the thermal equilibrium distribution. Production is most efficient at T ∼ M1 at

a time t∗ ∼ 1/(2H(M1)) and the number density is nN1 ∼ Γprodt
∗
U ∼ nγK. The lepton

asymmetry produced in out of equilibrium production is partly depleted by scattering

and (inverse) decays – not fully efficient, as it is out of equilibrium – and this avoids

that any asymmetry generated in production of N1 is subsequently erased by the out of

equilibrium decay. This gives another K suppression factor though. We thus estimate

YB ∼ 0.35|YL| ∼ 10−3|ϵ1|K for nN1(T ≫M1) ≈ 0 (3.35)

In both the weak and strong washout regime we need |ϵ1| ≳ 10−7 to obtain the

observed asymmetry. This implies large RHN masses M1 ≳ 109GeV eq. (3.31). Hence,

we won’t be able to probe the RHN in experiments. Neutrinoless double beta decay

is only possible for a the mixing between the light and heavy light majorana neutrino,

which hints to the seesaw mechanism with majorana RHN. If measures, this may be a

hint but doen no prove that leptogenesis is responsible for the baryon asymmetry.

Note thoughtthat the lower bound on the RHN mass is derived for a hierarchichal

spectrum M1 ≪ M2,M3. Al asymmetry is derived from the interaction of the lightest

RHN. However, for a more dense mass spectrum, this will no longer be the case, and

flavor effects and oscillations may become important. It is then possible to obtain the

observed asymmetry for ligther RHN masses.

4 EW baryogenesis

At high temperature the EW sphalerons are in thermal equilibrium and any preexisting

B − L symmetry is washed out. In EW baryogenesis baryon number is generated at

the electroweak phase transition. The picture is as follows:

The PT is first order and bubbles of true vacuum are nucleated, and expand into

the surrounding plasma. The plasma particles scatter off the bubble wall, and if this

interaction violates CP, the scattering is different for particles and antiparticles, which

will then have different transmission and reflection coefficients. For example, the pres-

ence of the CP violating top yukawa coupling eq. (4.1), may lead to an overdensity of

left-handed antiparticles over particles in front of the bubble wall (and a compensat-

ing overdensity of right-handed particles over antiparticles, as this interaction does not
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Figure 3. Electroweak baryogenesis mechanism.

violate baryon number). The EW sphaleron transition only interact with left-handed

particles. As there is an overdensity of left-handed antiparticles this will bias the

sphaleron rate which destroys antiparticles (in favor of particles as it violates baryon

number) over the inverse rate, and a net baryon asymmetry is created.

Left to itself, all the fast plasma interactions would bring the system back to

equilibrium, and erase the asymmetry. But there is not enough time for this to happen

as the baryons are swept up by the expanding bubbles. If the PT is strong v/T ≳ 1

the sphaleron rate eq. (2.33) is suppressed inside the bubble, and the baryons remain.

At the end of the PT, when bubbles collide and coalescence, there will be a net baryon

number created.

Consider how the Sakharov conditions are satisfied in EWBG. Baryon number is

violated by sphaleron transitions and C is maximally violated by the weak interactions.

The CP violation in the SM is too small and new sources of CP are needed. For it to

be important during the EWPT, this new physics should live around the TeV scale. As

an example of a CP violating new coupling, consider the correction to the top quark

yukawa interaction

L ⊃ yt√
2
ϕ

(
1 + c

ϕ2

Λ2

)
t̄LtR + h.c. (4.1)

with ϕ the radial higgs field. The dimension-6 operator can be thought of as generated

from integrating out new physics at the scale Λ. If Im(c) ̸= 0 then CP is violated. In

the vacuum ϕ = v + h, and the effective top mass is mt =
yt√
2
v
(
1 + c v2

Λ2

)
. The phase

can be rotated away by a chiral transformation tL → eiαtL and tR → e−iαtR. This is

the standard procedure to make the mass matrix real. However, in the CP violating
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bubble wall background the higgs field value v(x) is space-time dependent, and cannot

be rotated away by a global rotation. Hence the effective top mass in the bubble wall

background is complex – in particular, inside the bubble wall where the vev changes –

and the corresponding CP violation is physical and can generate an asymmetry between

tL and t̄L. Note that in the vacuum the t̄th-coupling still violates CP, which can be

probed in e.g. electric dipole moment experiments.

A phase transition (PT) corresponds to a change of the physical state (phase) of

a system due to changing external conditions (e.g. T, B,..) described in terms of an

order parameter. The order parameter of the EWPT can be taken as the Higgs vev

ϕ2 = ⟨H†H⟩ which breaks the EW symmetry SU(2)× Y (1)Y → U(1)Q.

Figure 4. Potential for 1st and 2nd order/crossover PT. For 1st order PT the order parameter

changes discontinuously, and PT proceeds via bubble nucleation.

The out of equilibrium dynamics requires the EW phase transition – in which the

order parameter ϕ becomes non-zero and breaks the EW symmetry – is first order,

and proceed via bubble nucleation. The EW potential at zero temperature is the

Mexican hat potential. Calculating quantum corrections to the potential in the presence

of a thermal bath (and not vacuum), the loop particles can exchange energy with

the plasma (there are now quantum and thermal fluctuations), and the corrections

become temperature dependent. At high temperature the dominant effect is a large

effective temperature dependent mass term for the Higgs, and the minimum of the

Higgs potential is at the origin; the electroweak symmetry is restored.

The order of the PT depends on the zero temperature potential and on thermal

corrections. A 1st order PT arises if there is a barrier between the true and false

vacuum, and the PT goes via tunneling and the nucleation of bubbles; otherwise the

transition is a smooth 2nd order/cross over instead and the order parameter changes

smoothly from its value in the false to that in the true vacuum everywhere in spacetime.
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With the particle content of the SM the EWPT is a cross over. New physics in the

Higgs sector is needed for a 1st order transition and for the EWBG scenario.

The EWBG requires new physics at the EW scale, which can be probed by collid-

ers (e.g. by measuring the triple Higgs coupling), measurements of the electric dipole

moment of the electron (which probes CP violation), and possibly in the future gravi-

tational wave experiments (the colliding bubbles and the colliding sound waves in the

plasma generate gravitational waves).

4.1 The Higgs potential at finite temperature

Further reading: book on thermal field theory [13], lecture notes on thermal field theory

[7] and on on thermal field theory and the effective potential [8]. We will consider the

one-loop corrections to the potential. The discussion on the SM in section 4.1.2 follows

[1].

Goal: calculate the scalar potential V (ϕ0, T ) at finite temperature. The tree-level

potential receives quantum corrections. In presence of a heat bath, loop particles can

exchange energy-momentum with the bath, and the corrections become temperature

dependent.

Work in the grand canonical ensemble: system can exchange energy, charge and

particles with the heat reservoir, while temperature, volume and chemical potentials

are kept fixed. For simplicity, set the chemical potentials to zero. The state of the

system is described by the density operator ρ. The partition function is defined as the

trace over the density operator (units kB = 1)

Z = trρ = tr(e−βH), β = 1/T (4.2)

All thermodynamic quantities can be derived from the partition function, e.g. the pres-

sure is P = T (∂ lnZ)/(∂V). We are interested in the free energy density F = −T lnZ,

which is minimized in equilibrium, and can be interpreted in a constant background as

the effective potential: Veff = F/V with V the volume.

If we compare the density operator ρ = e−βH with the the time-evolution operator

U(t) = e−iHt, then we can see that that −iβ plays the role of time variable. Define the

imaginary time variable

τ = it, 0 < τ < β = 1/T (4.3)

This observation underlies the statement that the finite temperature equilibrium field

theory is equivalent to the Euclidean theory defined on a finite imaginary ‘time’ interval.

Many methods developed for the description of zero-temperature quantum field theory

can be generalized to the non-zero temperature case.
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In QFT the generating function can be expressed in terms of the time evolution

operator, which leads to the path integral formulation

Z =

∫
dϕidϕf⟨ϕf (x, T )|U(T )|ϕi(x, 0)⟩ =

∫
Dϕ ei

∫ T
0 d4xL(ϕ) (4.4)

with boundary conditions ϕ(0) = ϕi and ϕ(T ) = ϕf (here the wave functions ⟨0|ϕf⟩⟨ϕi|0⟩
are surpressed, as is usually done, as they constitute an irrelevant normalization fac-

tor). The path integral runs along the contour C that spans from 0 < t < T . The finite

temperature partition function is obtained from this by Wick rotating to euclidean

time, and compactifying the Euclidean time direction

Z = tr(ρ) =

∫
dϕ ⟨ϕ|e−βH |ϕ⟩ =

∫
Dϕ e−

∫ β
0 dτ

∫
d3xLE (4.5)

with (anti) periodic boundary conditions ϕ(0) = ±ϕ(β) for bosons (fermions), and

with LE = −L(t → τ = it) the Euclidean action. The path integral contour C now

spans from 0 < τ < β. As the fields are (anti)-periodic in imaginary time, they can be

expanded in a Fourier series

ϕ(x, τ) =
∑
n

ϕ(x, ωn)e
iωnτ , ωn =

{
2πn
β
, bosons,

2π(n+1)
β

, fermions.
(4.6)

with Matsubara frequencies ωn. The compactness of the time interval makes the energy

variable discrete.

4.1.1 Thermal corrections to the potential

The goal is to calculate the one-loop potential in field theory at finite temperare. This

can be derived from the free (quadratic) Lagrangian, which itself can be viewed as a

collection of harmonic oscillators, one for each momentum mode k. Let’s thus start

with quantum mechanics and the harmonic oscillator first.

The Euclidean version of the generating function is

Z =

∫
dqfdqi ⟨qf |e−HT |qi⟩ =

∫
[dq]e−SE , (4.7)

We are interested in the free energy F = − 1
T lnZ of the system, and we can be cavalier

with the normalization factors of Z. We will work with the middle expression, but

same results can be derived from the path integral formulation. The Hamiltonian for

the harmonic oscillator is H = ω(N + 1
2
), and H|n⟩ = En|n⟩ = ω(n + 1

2
)|n⟩. Then

eq. (4.7) gives

Z = ⟨qf |e−HT |qi⟩ =
∑
n

e−EnT

∫
dqfdqi ⟨qf |n⟩⟨n|qi⟩, F = lim

T→∞
(− 1

T
lnZ) =

1

2
ω

(4.8)
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In the limit of euclidean time T → ∞ the free energy F is dominated by the lowest

lying energy state with n = 0 and F=E0 =
1
2
ω.

Now consider the harmonic oscillator at finite temperature. Wick rotate to eu-

clidean time and take the interval 0 ≤ τ = it ≤ β compact. The partition function

is

Z =

∫
dq ⟨q|e−Hβ|q⟩ ∼

∑
n

e−βω(n+ 1
2
)⟨n|q⟩⟨q|n⟩ ∼ e−βω/2

1− e−βω
,

F =
1

2
ω + T ln(1− e−βω) (4.9)

where we used F = −1/β lnZ. The first term is the zero temperature contribution,

same as we found before eq. (4.8).

The fermionic harmonic oscillator has energy En|n⟩ = ω(n − 1
2
), and the Hilbert

space only contains two states n = 0, 1 due the Pauli exclusion principle. In this case

the free energy is

Z =

∫
dq ⟨q|e−Hβ|q⟩ ∼

∑
n=0,1

e−βω(n− 1
2
)⟨n|q⟩⟨q|n⟩ ∼ eβω/2(1 + e−βω)

F = −1

2
ω − T ln(1 + e−βω) (4.10)

A free quantum field can be viewed as a collection of harmonic oscillators, one for

each frequency k. This can be made precise by putting the field in a finite volume,

which gives discretized momenta. The (leading one-loop) correction to the potential

V (1) is thus given by the momentum integral of eqs. (4.9) and (4.10) with frequency

ωk =
√
k2 +m2, which gives

V (1) =
∑
bosons

ni

∫
d3k

(2π)3

(
1

2
ωi + T ln(1− e−βωi)

)
−
∑

fermions

ni

∫
d3k

(2π)3

(
1

2
ωi + T ln(1 + e−βωi)

)
(4.11)

with ωi =
√

k2 +mi(ϕ)2 and ni the degrees of freedom, e.g. for a dirac fermion ni = 4.

The quantum corrections to the potential correspond to the 1-loop vacuum diagrams.

They only depend on the effective mass appearing in the propagator, and the results

can be extracted from the quadratic potential. The fermion contribution has an overall

minus sign as a fermion loop gets an overall sign due to the anti-commuting nature of

the fields.

The first term in the brackets in eq. (4.11) is the zero temperature contribution,

which sums over the frequencies of all modes – for a free field all the momentum modes

are independent harmonic oscillators with zero-point energy Ek = 1
2
ωk. This term is
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divergent, and the divergence can be absorbed in counter terms of the Lagrangian. This

term is the one-loop Coleman-Weinberg contribution to the potential. The 2nd term in

the brackets is the finite temperature correction to the potential, which we will denote

by VT . The temperature dependent correction is finite, and no temperature dependent

counterterms are needed; absorbing counter terms and renormalizing the theory can be

done once and for all at T = 0.

Note that the effective mass entering ωk is background field dependent m2 =

V ′′(ϕ0), and both terms contribute to the shape of the potential.

4.1.2 Thermal corrections to the SM Higgs potential

The temperature corrections come from the one-loop diagrams, with all SM particles

running in the loop. These loop diagrams are ϕ-dependend, as the masses of the

particles will depend on the Higgs field value. The EW gauge bosons and the top

quark couple most strongly to the Higgs field, and diagrams with these particles in the

loop will dominate the thermal corrections to the potential. The potential at one loop

order is V = V0 + VCW + VT , with VCW the zero temperature one-loop correction. The

zero temperature contribution is

V0 + VCW = −1

2
µ2ϕ2 +

1

4
λϕ4 +

∫
d3k

(2π)3
1

2
ωi

[ ∑
bosons

ni −
∑

fermions

ni

]
(4.12)

We can instead work with the RGE improved potential, and work with the classical

potential with running couplings. From now on we will ignore the CW contribution,

and treat V0 as the zero temperateure RGE improved potential. The thermal potential

is eq. (4.11)

VT =

∫
d3k

(2π)3

[ ∑
bosons

niT ln(1− e−βωi)−
∑

fermions

niT ln(1 + e−βωi)

]
T≫mi=

∑
i

ni

(
c
(2)
i

m2
iT

2

24
− c

(3)
i

m3
iT

12π

)
+O(m5

i /T ) (4.13)

In the 2nd line we expanded the in large T 2/m2
i ≫ 1. The coefficients are c

(2)
i , c

(3)
i = 1

for bosons, and c
(2)
i = −1

2
and c

(3)
i = 0 for fermions. For the SM the largest thermal

corrections come from the (Higgs, Goldstone), EW gauge fields, and top quark.

Φ = {h, θ,W±, Z, t}, m2/ϕ2 = {3λ, λ, 1
4
g2,

1

4
(g2 + g′

2
),
1

2
y2t }, n = {1, 3, 6, 3, 12}

(4.14)
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In the high temperature expansion V = V0 + VT in eqs. (4.12) and (4.13) becomes

V =
1

2
(−λv2 + aT 2)ϕ2 − 1

3
bTϕ3 +

λ

4
ϕ4

=
1

2
a(T 2 − T̄ 2)ϕ2 − 1

3
bTϕ3 +

λ

4
ϕ4 (4.15)

with T̄ 2 = (λ/a)v2 and

a =
1

2
λ+

3

16
(3g2 + g′

2
) +

1

4
y2t , b =

1

16π

(
12(1 +

√
3)λ+ 3g3 +

3

2
(g2 + g′

2
)3/2
)

(4.16)

The couplings measured at the EW scale are {λ, g, g′} ≈ {0.12, 0.38, 0.65}.
At high temperature T 2 > T̄ 2 = (λ/a)v2 the effective temperature dependent mass

term is positive, as the positive finite temperature correction exceeds the negative

−µ2ϕ2-term in the Higgs potential. The origin is a minimum of the potential. At

high enough temperature this is the only minimum, and the EW symmetry is restored,

that is the Higgs field is in the symmetric vacuum phase. As the temperature drops a

second minimum appearcs at the critical temperature T = Tc, which becomes the true

symmetry breaking vacuume of the theory. Whether there is a barrier between the

false and true vacuum, and thus whether the PT is 1st or 2nd order, depends on the

size of the qubic term, which needs to be large enough for a 1st order PT. Note that

only the bosonic fields contribute to this term, as follows from the high temperature

expansion eq. (4.13).

The criticical temperature for a 1st order PT is defined as the temperature at which

the two minima are degenerate. The potential at the critical temperature can then be

written in the following form, with degenerate minima at ϕ = 0 and ϕ = vc

V (Tc) =
λ

4
ϕ2(ϕ− vc)

2 =
λ

4
v2cϕ

2 − λ

2
vcϕ

3 +
λ

4
ϕ4 (4.17)

Note that vc ̸= v, with v the zero-temperature vev of the higgs field. Comparing ??

and eq. (4.17) gives

1

2
λvc =

1

3
bTc &

1

4
λv2c =

1

2
a(T 2

c − T̄ 2) ⇒ Tc =
λvc√

aλ− 2
9
b2

(4.18)

For EW baryogenesis require a strong PT defined as vc/Tc ≳ 1. This assures that

the washout inside the bubbles of true vacuum is suppressed (and unsuppressed in the

surrounding false vacuum phase). This follows from Esph/T ∼ (8π/g)(v/T ), which

enters the sphaleron rate Γ ∼ e−Esph/T , see eqs. (2.30) and (2.33). Hence too avoid too
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much washout v/T at bubble nucleation (which we assume is close to the ratio at the

critical temperature) should be larger than one. For the SM vc/Tc ≳ 1 requires

vc
Tc

=
2b

3λ
≈ 3g3

16πλ
≳ 1 (4.19)

Thus a strong 1st order PT occurs for a Higgs mass

m2
H =

1

2
λv2 ≲

3g3v2

32π
= (22GeV)2 (4.20)

where we used v = 246GeV and g = 0.65. This is much lower than the observed Higgs

mass. More careful (lattice) calculations give a larger value for the Higgs mass around

70GeV to obtain a 1st order PT. Although this is higher, it is still significantly below

the observed value.

To get a 1st order PT requires new physics beyond the SM. Additional bosonic

fields can enhance the cubic term in the thermal potential, e.g. by adding a singlet

(with Z2 symmtry) or Higgs triplet to the SM. In models with singlets (no Z2 symmtry)

or additional Higgs doublets, the extra Higgs field can also get a vev in the vacuum,

and thus affect the tree-level form of the potential.

4.2 Tunneling and bubble nucleation

The time evolution operator of quantum mechanics is U(t) = e−iHt. If the energy,

which is the eigenvalue of the Hamiltonian, has an imaginary part Γ ∼ Im(E) ̸= 0, the

state will decay. We aim to calculate the decay rate for the false vacuum via bubble

nucleation during a first order PT.

Useful reference for phase transitions [9, 14]; the generalization to finite tempera-

ture is found in [15].

4.2.1 Tunneling in QM

Start again with QM at zero temperature, and work with Euclidean time. Consider

the Euclidean action

SE =
1

2

∫
dτ [(∂τq)

2 + V ] (4.21)

The potential has (false) vacuum at q = q− and true vacuum at q = q+ and is normalized

such that V (q−) = 0. The equations of motion are

δSE

δq
= −∂2τ q + V ′ = 0 (4.22)

– 29 –



These are the equations of motion for a particle moving in a potential −V , and E =
1
2
(∂τq)

2 − V is a constant of motion. The trivial solution is q = q−, and fluctuations

around it correspond in at leading order to the harmonic oscillator:

Z = Ne−FT =

∫
[dq]e−S

(2)
E = det[−∂2τ + V ′′]−1/2 ∼ e−

1
2
ωT (4.23)

with ω2 = V ′′(q−). This gives a shift of the free energy by zero-point fluctuations

F = E0 =
1
2
ω.

Figure 5. Left: Potential V with false and true vacuum. Right: inverse potential −V . From

[14];

With another local minimum of the potential, there is however another solution to

the equations of motions with finite energy. For the energy to be finite q(±T/2) = q−
(such that the energy of the field at rest E = −V vanishes), but at intermediate times

the field can go to escape point σ and back (with σ the point for which V (σ) = 0).

This is the bounce solution, which is the solution to the eom with boundary conditions

∂τq|τc = 0, lim
τ→±∞

q = q− (4.24)

with tc the center of the bounce at field value q(tc) = σ, and q = q− asymptotically.

Integrate the eom eq. (4.25) to give

∂τ (
1

2
(∂τq)

2−V ′) = 0 ⇒ 1

2
(∂τq)

2−V = −V (q−) = 0 ⇒ τ =

∫ σ

q

dq√
2V

(4.25)

The action for the bounce qb is

B ≡ SE(qb) =

∫
dτ V =

∫ σ

0

dq
√
2V (4.26)

where we used the eom twice to set ∂2τ q = V and (∂τq) =
√
2V . There can be many

bounces in the time-interval T . Summing over them gives

Z ∼ e−
1
2
ωT
∑
n

∫ T/2

−T/2

dt1

∫ t1

−T/2

dt2...

∫ tn−1

−T/2

dtn (Ke−B)n = e−
1
2
ωT
∑
n

(TKe−B)n

n!

= e−( 1
2
ω−Ke−B)T (4.27)
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K is the determinant from the gaussian perturbations around the bounce solution.

As the bounce is not the minimum of the action but a saddle point, the eigenfunction

equation has a negative eigenvalue, and Im(K) ̸= 0. Now defining the decay probability

per unit time by

Γ = −2ImE =
2

T
Im lnZ = 2Im(K)e−B = Ae−B =

(
B

2π

)1/2 ∣∣∣det′ [∂2τ + V ′′(qb)]

det [∂2τ + ω2]

∣∣∣e−B

(4.28)

The action for a single bounce B in eq. (4.26) gives the timescale of decay. Here det′

implies that the zero eigenvalue of the operator ∂2τ + V ”(qb) is to be omitted. This

zero mode corresponds to the time-translational invariance of the bounce solution. We

have already included this when integrating over the time translations of the bounce

eq. (4.27). The factor
(

B
2π

)1/2
comes from the change of variables in the integration of

bounce postions to integration of the time of the bounce. The determinant is hard to

compute in practice, but the coefficient A can be estimated from dimensional analysis.

4.2.2 Tunneling in QFT

Results carry over to QFT. Consider a real scalar with Euclidean action

SE =

∫
d4x

(
1

2
(∂τϕ)

2 +
1

2
(∇ϕ)2 + V

)
(4.29)

where the potential has a (false) true vacuum at (ϕ = ϕ−) ϕ = ϕ+, and we set V (ϕ−) =

0. The Euclidean Lagrangian is invariant under a four- dimensional Euclidean rotation.

The lowest energy bounce solutions is O(4) symmetric. Define ρ =
√
r2 + τ 2. The

bounce then solves the eom with boundary conditions

□ϕ = ∂2ρϕ+
3

ρ
∂ρϕ = ∂ϕV, lim

ρ→∞
ϕ = ϕ−, ∂ρϕ|ρ=0 = 0 (4.30)

The equation of motion has a mechanical interpretation (with ρ as time) of a particle

moving in a potential −V , subject to a a damping force (the first derivative term).

The particle is released at rest at time zero. If the initial position is chosen properly,

this can be done by adjusting the center of the bounce ϕb(ρ = 0) = ϕ0 using a under-

shoot/overshoot method, the particle will come to rest at infinite time at ϕ−, and the

solution has finite energy.

The decay rate per unit volume per unit time is Γ
V = Ae−B with

B = SE(ϕb)− SE(ϕ−) = (2π2)

∫
dρ

[
1

2
(∂ρϕb)

2 + V (ϕb))− V (ϕ−)

]
,

A =

(
B

2π

)2 ∣∣∣det′ [∂2τ + V ′′(ϕb)]

det [∂2τ + V ′′(ϕ−)]

∣∣∣ (4.31)
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with ϕb the bounce solution. SE(ϕ−) is the action for the trivial solution in the false

vacuum, which vanishes with our normalization V (ϕ−) = 0. There are now 4 zero

modes corresponding to translation of the solution along any of the 4 axes in euclidean

space.

At zero temperature the bubbles nucleate because of quantum fluctuations. For

T ̸= 0 thermal fluctuations will also play a role. The dynamics of bubble formation is

influenced by temperature.

To include finite temperature one needs to compactify the imaginary time direction

0 < τ < β. Consider the infinite time axis, where the theory is periodic with period

β. For bubble sizes R ≪ β, i.e. T < R−1, the bubble is much smaller than the size of

the compactified direction, and the finite temperature effects are small. The solution

is a series of the O(4)-symmetric bubbles placed at a distance β from each other. As

T increases the bubbles become placed closer together, until at T ∼ R−1 they become

overlapping in the time direction. For T ≫ R−1 the solution is a cylinder, whose spatial

cross section is the the O(3) symmetric bubble of some new radius. In other words,

the bubble solution can be approximated as constant in the time direction, which can

be integrated over, and is the solution of the equations of motion in 3 dimensions.

Figure 6. Solution of the bounce equations at different values of the temperature. (a) T = 0;

(b) T ≪ R−1; (c) T ∼ R−1; (d) T ≫ R−1. The dashed regions contain the classical field

ϕ ̸= 0. For simplicity we have shown the bubbles for the case when their wall thickness is less

than the bubble radius. From [15].

We can then write the euclidean action as

B =

∫
dτ

∫
d3rLE = βS3, S3 =

∫
d3r

(
1

2
(∇ϕ)2 + V (ϕ, T )

)
(4.32)

where we again set V (ϕ−) = 0. The bubble will now be O(3) symmetric, and the eom

become

□ϕ = ∂2ρϕ+
2

ρ
∂ρϕ = ∂ϕV, lim

ρ→∞
ϕ = ϕ−, ∂ρϕ|ρ=0 = 0 (4.33)
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with now ρ =
√
r2. The different coefficient of the damping term comes from the □ϕ

operator in 3 dimensions. The tunneling rate per unit volume is

Γ

V
= Ae−S3/T =

(
S3

2πT

)3/2 ∣∣∣det′ [∂2τ + V ′′(ϕb)]

det [∂2τ + V ′′(ϕ+)]

∣∣∣e−S3/T (4.34)

The coefficient A ∼ T 4
(

S3

2πT

)3/2
on dimensional grounds. This gives us an expression

for the tunneling rate per unit volume for a given temperature.

4.2.3 Thin wall approximation

Consider the limit that the energy-density difference between the true and false vacuum

is much smaller than the height of the barrier. We parameterize the potential

ϵ = V (ϕ−)− V (ϕ+), V = V0 + ϵ
(ϕ− ϕ−)

(ϕ+ − ϕ−)
(4.35)

with V0(ϕ+) = V0(ϕ−) = 0 the symmetric part of the potential.

The bounce action S3 consists of the surface energy of the bubble proportional to

(∇ϕ)2, which is the transition region in which the field changes from the false vacuum

outside the bubble to (close to) the true vacuum inside. The surface term scales as

∝ R2 and costs energy. The other term is the volume region inside the bubble V (ϕ+)−
V (ϕ−) = −ϵ for ρ < R. This contribution scales as ∝ −ϵR3 and gains energy. It is

energetically favorable for the bubble to expand if the volume term wins. For small ϵ

this happens only for a large radius R. When the size of the bubble becomes much larger

than the thickness of the wall the bounce solution ϕ(ρ) stays close to the escape point

at ρ = 0 for a long time, until at ρ ∼ R it rolls to the asymptotic false vacuum solution

at ϕ−(ρ→ ∞). The thin wall approximation consists of dropping the damping term in

the eom. At small ρ it is negligible because the field is approximately frozen, whereas

when it starts to roll at large radius ρ ∼ R the damping term is 1/R suppressed.

Dropping the friction term and the ϵ-correction to the potential in the eom eq. (4.33)

gives ϕ′′ = ∂ϕV0. We have already solved this in the QM example eq. (4.25). Copying

that solution gives

ρ− ρ̄ =

∫ ϕ

1
2
(ϕ−+ϕ+)

dϕ√
2V0

(4.36)

with ρ̄ the integration constant defined as the coordinate when ϕ(ρ) is the average of

the two minima.

If ρ̄ is large, the bounce looks like a ball of true vacuum, ϕ = ϕ+, embedded in a

sea of false vacuum, ϕ = ϕ−, with a transition region (“the wall”) separating the two.

The wall is small in thickness compared to the radius of the ball ρ̄. We can divide
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the solution in three regions: ϕ = ϕ− in the outside region ρ > ρ̄, ϕ = ϕ+ in the

inside region ρ < ρ̄, and the wall region ρ ∼ ρ̄ wherec the transition takes place. The

euclidean action is

(S3)outside = 0,

(S3)inside = −4

3
πρ̄3ϵ,

(S3)wall ≈ 4πρ̄2
∫

dρ (2V0) = 4πρ̄2
∫ ϕ−

ϕ+

dϕ
√

2V0 ≡ 4πρ̄3S1 (4.37)

where we assumed the wall thickness much smaller than ρ̄. S1 is the action for the

1-dim theory, which gives the surface tension of the bubble. To find the radius R,

minimize the action with respect to ρ̄

∂ρ̄S3

∣∣∣
ρ̄=R

= ∂ρ̄

(
−4

3
πρ̄3ϵ+ 4πρ̄2S1

) ∣∣∣
ρ̄=R

⇒ R =
2S1

ϵ
(4.38)

which gives

S3 =
16πS3

1

3ϵ2
(4.39)

as the final result.

4.2.4 Fate of the false vacuum

Consider first the T = 0 case. The classical field makes a quantum jump (say at t = 0)

to the state defined by

ϕ(t = 0,x) = ϕ(τ,x) (4.40)

This implies that the same function, ϕ(ρ), that gives the shape of the bounce in four

dimensional Euclidean space also gives the shape of the bubble at the moment of

its materialization in three-space. At finite t we can analytically continue back to

minkowski space to find

ϕ(t,x) = ϕ(ρ =
√
|x|2 − t2) (4.41)

The bubble will expand (or collapse), with velocity that soon after its existence will

reach the speed of light. The energy is the sum of the negative volume energy term

and a positive surface term. For the thin wall solution

E = −4π

3
ϵR3 + 4πS1R

2 =
4π

3
ρ2(R0 −R)ϵ (4.42)

with R0 the radius of the thin wall bubble at creation. The energy vanishes at bubble

creation, dictated by energy conservation, as the energy vanished before the bubble was
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created. The bubble will expand if the volume term wins and ∂RE ≥ 0. The critical

bubble where this equation is saturated has Rc = 2S1/ϵ. Since R0 > Rc the thin wall

bubble will expand.

For the thin wall solution the bubble has a thin wall at R = R0. As the bubble

expands, this wall traces out the hyperboloid |x|2 − t2 = R2
0, and the ball expansion

soon reaches the speed of light.

At finite temperature the ball will not expand in vacuum but in a thermal plasma.

Plasma particles will scatter off and enter the bubble, and as they are massless outside

and massive inside, this will take away energy, slowing the bubble down. To calculate

the bubble expansion velocity is a very active area of research, as this parameter enters

the predictions for baryogenesis and the gravitational wave signal.

Nucleation temperature. The phase transtion occurs if the bubbles expand and

coalesce, and the whole of space thus transitions to the true vacuum state. For this to

happen, at least one bubble per Hubble volume per Hubble time needs to be nucleated.

In other words, when Γ ∼ H – where we used that V ∼ H−3 is equal to the Hubble

volume – the phase transtion takes place. The temperature at which this happens is

called the nucleation temperature TN , which is lower than the critical temperature.

For strong phase transtions, happening for potentials with a large barrier, the phase

transition can be delayed with nucleation temperature much smaller than the critical

temperature; if the barrier is really large, the universe may be stuck in the false vacuum

(on timescales of the age of the universe) and the phase transition never takes place.

In the opposite limit, for shallow barriers, one expects TN ∼ Tc to be close.

Using that H2 ∼ T 4/M2
P during radiation domination, one can estimate the nucle-

ation temperature via
S3

T
∼ ln(H4/T 4) ∼ ln(M4

P/T
4) (4.43)

For the EW scale T ∼ 102GeV this gives S3/TN ∼ 150.

4.3 Sketch of EW baryogenesis calculation

The calculation of the final asymmetry is complicated, because of finite temperature

effects (and e.g. the IR contributions of soft photons), non-equilibrium dynamics, and

non-perturbative dynamics. Calculations are usually done in a EFT-like approach,

where proccesses on different timescales are separated. Let’s assume the bubble wall

background is changing slowly on the time-scales of the CP-violating plasma interac-

tions, and can be treated as adiabatically changing. The sphaleron transitions are also

relatively slow, and the process can be considered as a two step process: first a chiral

– 35 –



asymmetry is created, and then at a later time this is transferred into a baryon asym-

metry. The calculational approach will then be to determine the phase space densities

of the plasma particles interacting with the slowly changing bubble wall background.

Consider the distribution function f(x,p, t), which is a function of position, proper

momentum and time. It describes the density of particles at time t, at the point x and

with momentum p. (Quantum mechanically no particle can be localized in phase space

at a point (x,p), and one should integrate over a (small) phase space volume to get

the propability to find a particle in that volume.) Integrating the distribution function

over momenta gives the particle number density:

n(x, t) = gs

∫
d3p

(2π)3
f(x,p, t) (4.44)

with gs the degeneracy of the species, e.g. the number of spin or polarization states.

In a constant background and in thermal equilibrium the phase-space density is space-

time independent, and it is the familiar Bose-Einstein and Fermi-Dirac distribution for

bosons and fermions f = (e
√
k2+m2/T ± 1)−1. For a system close to thermal equilibrium

one can perturb around the equilibrium distributions, and try to solve for the pertur-

bations. The time evoltion of the phase space densities is given (at the semi-classical

level) by the Boltzmann equations:

df

dt
= C[f ] (4.45)

with C[f ] the collision term which describes the interaction among the particles. Out

of equilibrium both positon and momentum are generically a function of time, and the

total time derivative can be written as

df

dt
=
∂f

∂t
+

dx

dt
· ∇xf +

dp

dt
· ∇pf =

∂f

∂t
+ v · ∇xf + F · ∇pf (4.46)

where v is the particle velocity and F is the force acting on the particle.

The CP violating yukawa interaction eq. (4.1) gives a complex mass term

m(x, t) =
yt√
2
vb(1 + c

v2b
2Λ2

) = |m|eiθ (4.47)

with vb the bubble background: vb = 0 outside the bubble and vb = vN at nucleation

temperature inside the bubble, and the change in the bubble wall is given by the bounce

solution. Taking for simplicity c = icI imaginary, then |m| = yt√
2
vb and θ =

cI
yt

v2b
2Λ2 up to

higher order corrections in Λ−2. This generates a force when a particle tries to enter

the bubble wall, as momentum is needed to generate the mass inside and thus ṗ ̸= 0.
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For a complex mass this source is different for particles and antiparticles. To calculate

the force one needs to find the dispersion relation E(p) in the bubble wall background,

which allows to extract the force ṗ.

Start with the Dirac equation for the top quark, which can be written as

(i/∂ −mPL −m∗PR)ψ = 0 (4.48)

with PL,R = 1
2
(1∓γ5). Go the frame in which the bubble wall is at rest. Now decompose

the spinor into its chiral compoments as

ψ =

(
qL
qR

)
= e−iωt

(
Ls

Rs

)
⊗ χs (4.49)

These are positive energy solutions, appropiate for particles. We will use the chiral

basis for the gamma matrices

γµ =

(
0 σµ

σ̄µ 0

)
, with σµ = (1, σi) & σ̄µ = (1,−σi). (4.50)

χs is a two component spinor state with σ3χ = sχ, and s labeling the spin along the

direction of motion, which we take the z-direction. The dirac equation becomes

(ω − is∂z)Ls = mRs, (ω + is∂z)Rs = m∗Ls (4.51)

These can be written as uncoupled 2nd order equations[
(ω + is∂z)

1

m
(ω − is∂z)−m∗

]
Ls = 0,

[
(ω − is∂z)

1

m∗ (ω + is∂z)−m

]
Rs = 0

(4.52)

After Fourier transform Ls(z) =
∫

d3k
(2π)3

eikzLs(k) this gives for aconstant m the solution

ω2 − k2 − |m|2 = 0, which is the usual dispersion relation for a free particle. In a

spacetime-dependent background p = p(z), giving rise to a non-zero force ṗ in the

dispersion relation; if m ̸= m∗ the force can be different for the left- and right-handed

modes. To solve the equations, assume the bubble wall background is slowly changing,

and use the WKB Ansatz

Ls = ω(z)ei
∫ z p(z′)dz′ (4.53)

Substitute in the Dirac equation for Ls, and solve iteratively in a derivative expansion.

The solution is

p = p0+
sω + p0
2p0

θ′+O(∂2z ), p0 = sign(p)
√
ω2 − |m|2 ⇒ ω =

√
(p+ θ′/2)2 + |m|2−1

2
sθ′

(4.54)
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For anti-particles can repeat the caculation for negative energy modes. Results is to

set m → −m∗, which changes θ′ → −θ′. Finally, to compute the force entering the

Boltzman equation we use the Hamilton equation

ṗ = −
(
∂ω

∂z

)
p

= −(m2)2

2ω
+ ssc

(m2θ′)′

2ω2
(4.55)

with sc = ±1 for particles and antiparticles. The first is a CP conserving force term,

the same for particles and antiparticles. As it is larger, it is the dominant friction term

as the bubble expands in the plasma, and important to find the expansion velocity of

the bubble. The 2nd term is the CP-violating force term, that may generate a chiral

asymmetry between left-handed particles and antiparticles. The Boltzman equation is

a partial differential equation. It can be solved approximately taking moments, to find

the net chiral asymmetry.

The finaly baryon asymmetry is then

dnB

dt
∼ NfΓsphµtL − cΓsph

nb

T 2
(4.56)

The first term converts an overdensity of left-handed (anti)-particles into a baryon

asymmetry, note that the chemical potential µqL for the left-handed tops is proportional

ntL − nt̄L . The 2nd term is the washout term, the more baryons are created, the

more important it becomes. The sphaleron rate Γsph(x) is only important outside the

bubbles, where baryons can be created, and it becomes small inside the bubble where

the transitions are shut off. In the bubble wall rest-frame, the frame that the bubble is

at rest, one thus should only integrate the above equation in the z-region outside the

bubble.

4.4 Constraints from electric dipole moment measurements

In non-relativistic electrodynamics the interaction of a fermion with spin S = 1
2
σ with

an electric and magnetic field is described by the Hamiltonian

H = −µ(S ·B)− d(S · E) (4.57)

with µ and d the magnetic and electric dipole moment respectively. Turning on a

magnetic (electric) field puts a torque on the system leading to spin prececssion with

angular velocity ω = 2µ|B| sin θ (ω = 2d|E| sin θ).
Under a time-reversal T : t→ −t and parity P : x → −x

T : S → −S, B → −B, E → E,

P : S → S, B → B, E → −E, (4.58)
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The transformations of E,B can be deduced from the Lorentz force F = ma = q(E+

v × B), under T : a → a and v → −v, while under P : a → −a and v → −v. Spin

behaves just as angular momentum L = r × p. Magnetic dipole moments (MDMs)

are invariant under T and P , but electric dipole moments (EDMs) violate both T and

P . The CPT theorem tells that T violation is equivalent to CP violatioin. Hence,

measurement of an EDM is a probe of CP violation.

The Dirac Lagrangian for a fermion

L = ψ̄i /Dψ̄ −mψ̄ψ (4.59)

with covariant deriavite Dµ = ∂µ + ieAµ, gives in the non-relativistic limit a MDM

with µ = eg/(2m) and g = 2, but no EDM d = 0. This can be seen by calculating

the tree-level diagram in fig. 7. The absence of an EDM is expected as QED does not

violate CP. The MDMs and EDMs get loop level contributions

δL = −1

2
ψ̄σµν(

ea

m
+ iγ5d)ψFµν (4.60)

with a = (g − 2)/2 the anomalous magnetic moment. In the SM there is CP violation

in the CKM matrix (and in the θ-term, which we ignore). Consider the electric dipole

moment of the electron, which has been measured very precisely, and generically gives

the stronges bounds on CP violation. At one loop there are only CP conserving dia-

grams in the SM, see fig. 7, contributing to a but not d. Only at 4 loops is the electron

EDM first generated from CKM-interactions. In SM the electron magnetic and electric

dipole moments are

µe ≃ 100 e fm, de ≃ 10−2e e fm, (4.61)

The CKM EDM is really small.

Currently the strongest bound on the electron EDM come from the [? ] experiment,

which give the constraint de ≲ 10−29 e cm = 10−16 e fm. The sensitivy is way off to

measure the CKM EDM. However, if new CP violating physics exist this can give

a dominant contribution to the EDM, and the ACME results are actually a quite

powerfull constraint. On dimensional grounds a tree-level contribution to the electron

EDM by new physics at a scale Λ will be of the order

de ∼
me

Λ2
e ∼ 4× 10−24

(
TeV

Λ

)2

e cm ≤ 4× 10−30 e cm (4.62)

which gives the constraint Λ ≳ 103TeV. If the EDM is generated at n-loop level,

we expect n loop factors (4π)2 (and possibly further suppression by small couplings),

reducing the bound on Λ. Still, bounds can be much stronger than currenly probed in

the LHC.
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Figure 7. Tree level (a) and one-loop (b) contribution to the magnetic dipole moment of

the electron within QED.

a b c

Figure 8. Two-loop diagrams contributing to the electron EDM. Single (double) lines denote

the electrons (top quarks), dashed lines the Higgs boson, and wavy single (doubles) lines the

photons (Z-bosons). Circles denote SM vertices, while squared denotes CPV dimension-six

vertices. Only one topology for each diagram is shown.

If we consider the CP violating correction to the top yukawa coupling that we

looked at before eq. (4.1), this generates an EDM at two-loop level, see fig. 8

de
e

= − 8αem

(4π)3
meNcQ

2
tg(xt)

Im(c)

Λ2
, g(xt) =

xt
2

∫ 1

0

dx
1

x(1− x)− xt
ln

(
x(1− x)

xt

)
(4.63)

with xt = m2
t/m

2
h, and numerically the two-loop function is g(xt) ≈ 1.4. For Im(c) = 1

this gives the very strong bound Λ ≥ 7.1TeV on the cutoff scale.

The EDM bound rules out the simplest scenarios for EW baryogenesis, as the

CP violation is too small to obtain the observed baryon asymmetry. Solutions are a

fine-tuning in the CP violating couplings such that there is a partial cancellation in

diagrams contributing to the EDM, thus weakening the bound on the cutoff scale. CP
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violating couplings to other scalar fields (e.g. the singlet in the doublet-singlet model)

are unconstrained by EDM measurements. Yet, another avenue is to consider different

mechanism for EW baryogenesis. E.g. one could consider resonance effects in EW

baryogensis with multiple fermion flavors. Or a set-up where the plasma particles are

(temporarily) trapped in the pockets of false vacuum phase (as it cost energy to enter

the bubble), increasing their local density.

4.5 Constraints from gravitational waves

The Einstein’s equations

Rµν −
1

2
Rgµν = 8πGNTµν (4.64)

describe how spacetime curves in the presence of matter, and how matter moves in a

curved spacetime. The curvature tensor and scalar are constructed from the metric,

which measures distances

ds2 = gµνdx
µdxν (4.65)

with summation over repeated indices implied. In flat spacetime the metric is gµν =

ηµν = diag(1,−1,−1,−1) of Minkowski spacetime, while e.g. in an isotropic and ho-

mogeneous expanding universe the metric is the Friedman-Robertson-Walker eq. (A.1).

The coupling between the curvature on the lhs and the energy-momentum on the rhs

of the Einstein equations is suppressed by 8πGN = 1/M2
P. Around most astrophysi-

cal objects such as our sun the gravitational field is weak, with curavure radius R−2

much smaller than the planck length (the exception of strong gravituational fields are

black holes, and near the big bang). We can then perturb the metric around the FRW

background and linearize the (non-linear) Einstein equations. Any causal mechanism

can only produce gravitational waves on subhorizon scales, where curvature effects are

small, and for simplicity we neglect the expansion of the universe for now.

Expanding the metric gµν = ηµν + h̃µν with |h̃µν | ≪ 1, substituting in Einstein’s

equations and using Lorentz gauge ∂ν h̃µν = 0 gives

□hµν = −16πGNTµν (4.66)

with hµν = h̃µν − 1
2
ηµν h̃. The metric is a symmetric 4× 4 real tensor, which has 10 dof.

The gauge fixing removes 4 dof. The Einstein equation ouside the source (Tµν) gives 4

constraint equation, which we can use to go to transverse-traceless gauge

hµ0 = 0, hjj = 0, hjij, = 0 (4.67)

The first condtion set all temporal components to zero, the 2nd are the traceless and

transverse conditions. In this gauge h̃µν = hµν . The existence of the 4 constraint
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Figure 9. Polarizations for a gravitational wave travelling out of the plane

equations can be understood because the Lorentz gauge does not fix gauge invariance

fully. There are gauge transformations xµ
′ → xµ + ξµ that leave the lorentz gauge

condition invariant, h̃′µν = h̃µν − (ξµ,ν + ξν,µ) with □ξµ = 0. This additional freedom

allows to go to transverse-traceless gauge. The end result is that there are two physical

dof, corresponding to the two polarizations.8

In a cosmological context, the gravitational wave (GW) can be described by a

tensor perturbation of the FRW metric eq. (A.1)

ds2 = dt2 − a2(δij + hij)dx
idxj (4.68)

which is transverse and traceless ∂ihij = hii = 0. hij is symmetric and has 6 dof, the

gauge constraints fix four, which leaves two dof corresponding to the polarizations.

In vacuum Tµν = 0 eq. (4.66) is a wave equation. If we consider a wave travelling

along the z-direction the solution is (in TT gauge)

hij(t, z) =

(
h+ h×
h× −h+

)
cos(ω(t− z)) (4.69)

with h+, h× the amplitudes of the two polarizations. The gravitational wave travels

with the speed of light.

8This can be compared with electromagnetism where the vector field Aµ has 4 dof, there is one gauge

fixing condition e.g. ∂µAµ = 0, which only partially fixes the gauge as transformations Aµ′
= Aµ+∂µϵ

leave the gauge condition invariant for □ϵ = 0. This additional freedom allows to eliminate another

dof, or equivalently, the A0 equations is non-dynamical and provides a constraint on the system. There

are then two phyiscal dof (the two polarizations).
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If we put the source term back in we can solve the eq of motion by Green’s functions

methods □xG(x, x
′) = δ4(x− x′). We are interested in the retarded Green’s functions,

such that the solution only depends on past sources and is causal – this is analogous

to what is used in electrodynamics. Using that ∇2(1/|x− x′|) = −4πδ3(x− x′) gives

hTT
ij =

16πGN

4π

∫
dt′
∫

d3x′
T TT
ij (x′, t′)

|x− x′|
δ(t′ + |x− x′| − t)

=
16πGN

4π

∫
d3x′

T TT
ij (x′, t− |x− x′|)

|x− x′|
(4.70)

with T TT the transverse traceless part of the energy-momentum tensor. For an observer

far from the source kr ≫ 1 we can make the approximation |x− x′| = r − n̂ · x′ (with

r = |x|). We further assume the source is non-relativistic, such that we can neglect

internal motions of the source. We can then do a multipole moment expansion in

(n̂ · x′). Keeping only the leading order term, this gives

hTT
ij ≈ 16πGN

4πr

∫
d3xT TT

ij (x, t− r) (4.71)

Finally, using energy momentum conservation ∂µT
µν = 0 one can show that

∫
d3xT ij =

1
2

∂2

∂t2

∫
d3xT 00xixj and

hTT
ij ≈ 16πGN

8πr

∂2

∂t2

∫
d3xT00(x, t− r)(xixj − 1

3
δijr2) =

16πGN

8πr
Q̈ij (4.72)

with Qij =
∫
d2xT 00(xixj − 1

3
δijr2) the quadrupole moment, and (for weak fields)

T 00 = ρ the energy density. The delta function term is added to pick the transverse

traceless part of the energy momentum tensor.

If a gravitational wave passes two test particles at rest located at x = (0, 0, 0) and

x = (ϵ, 0, 0), the proper distance between them changes as

l =

∫ √
ds2 =

∫ ϵ

0

√
|gxx|dx ≃ (1 +

1

2
hxx(x = 0))ϵ (4.73)

The gravitational wave is curving the spacetime, which we can detect by the geodesic

deviation it introduces.

Gravitational waves are generated by accelerated mass distributions with a non-

zero quadrupole moment. Spherical system will not produce a gravitational wave signal,

as the quadrupole is zero, but any deviation from spherical symmetry can. Also the

system must be accelerating, and a system in stationary motion does not radiate. As

the coupling is 8πGN = 1/M2
P suppressed, these sources must be energetic to obtain

observable waves, especially if the sources are far away.
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4.5.1 GW from 1st order PT

The energy density in gravitational waves is

ρgw =
⟨ḣijḣij⟩

4π
=

∫
df

f

dρgw
d log f

(4.74)

with f the frequency, and from now on we set 8πGN = 1. The superposition of GW

produced by a large number of unresolved sources in the early universe form a stochastic

background, assumed to be statistically isotropic, stationary and nearly Gaussian. Its

main properties are then described by its power spectrum. The quantity that is usually

considered to characterize cosmological backgrounds is the spectrum of energy density

per logarithmic frequency interval divided by the critical density ρc,0 today

h2Ωgw(f) =

(
h2

ρc

dρgw
d log f

)
0

(4.75)

with ρc,0 = 3H2
0 and H0 = 100h km/s/Mpc., and h parameterizing the uncertainty in

todays Hubble constant.

Let’s start with an estimate of the typical frequency and signal for a first order

PT, which can be sourced by colliding bubbles and plasma waves that are accelerated

by the bubbles.

The time of the PT is the nucleation temperature T∗ ≈ Tn. The inverse time dura-

tion of the transition is parameterized by δt−1
∗ = β. For subhorizon causal mechanisms

β/H∗ > 1; in the case of a PT this is the requirement that the PT ends and bubbles

coalesce. β can be defined from the bubble nucleation rate eq. (4.34) via

β = −d(S3/T )

dt

∣∣
∗ ≃

Γ̇

Γ
⇒ β

H∗
= T

d(S3/T )

dT

∣∣∣∣
∗

(4.76)

The bubble wall radius can be estimated R ∼ vw/β with vw the expansion velocity

of the bubble. The characteristic wave number of the gravitational wave is then of

the order k∗ ∼ 1/R = β/vw, corresponding to a frequency f∗ = k∗/(2π). The energy

density can be estimated from the eom eq. (4.66). A time-derivate gives a β-factor,

and schematically the eom becomes β2h2 ∼ 2T , which suggests ḣ ∼ 2T/β. Then

ρgw ∼ ḣ2/(4π) ∼ T 2/β2. Setting T ∼ ρs equal to the energy in the source (released

in the PT transition) and dividing by the total (critical) energy density at time of

emission this gives ρgw/ρc ∼ (H∗/β)
2(ρs/ρc)

2
∗.

To relate the frequency and energy denisity at emission to what is observed today

one has to take the expansion of the universe into account. The energy density in gravity

waves decreases as a−4 and the frequency of the gravity waves redshifts as a−1, with a
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the scale factor. If the universe has expanded adiabatically since the phase transition,

the entropy per comoving volume S = a3g∗(T )T
3 remains constant eq. (A.21), and the

ratio of the scale factor at the transition to the scale factor today is

a∗
a0

= 8× 10−17

(
100

g∗

)1/3(
1TeV

T∗

)
(4.77)

The frequency today is then

f0 = f∗
a∗
a0

≃ 10−2 1

vw

β

H∗

T∗
100GeV

( g∗
100

)1/6
mHz (4.78)

where we used that H2
∗ = ρrad/3 = π2g∗T

4
∗ /90 to write it in terms of the ratio β/H∗ > 1.

This falls in the frequency range for LISA which has largest sensitivity in the mHz range.

The GW are produced in the radiation dominated era, but at later times the

universe became matter and cosmological constant dominated. Radiation red shifts as

ρrad(T0)

ρrad(T∗)
=
g∗(T0)T

4
0

g∗(T∗)T 4
∗
=

(
g∗(T∗)

g∗(T0)

)1/3
a4∗
a40

⇒ Ωgw

Ωrad

=

(
ρgw
ρrad

)
0

=

(
g∗(T∗)

g∗(T0)

)1/3(
ρgw
ρrad

)
∗

(4.79)

The only difference between the plasma and GW energy densities, is that the former

gets slightly heated each time a dof freezes out; this effect is incorporated in the time-

dependence of the number of relativistic dof g∗. As the GW are produced during

radiation domination ρrad(T∗) = ρc(T∗) at the time of emission, and we can thus write

Ωgw = Ωrad

(
g∗(T∗)

g∗(T0)

)1/3

Ωrad

(
ρgw
ρc

)
∗
∼ Ωrad

(
g∗(T∗)

g∗(T0)

)1/3(
H∗

β

)2(
ρs
ρc

)2

∗
(4.80)

The energy density in GWs is maximised for small β (but β exceeds unity), and for

larger energy release during the PT. Since h2Ωrad ≃ 4 × 10−5 and within the SM(
g∗(T∗)
g∗(T0)

)1/3
= O(1) a GW signal above the LISA sensitivity of h2Ωgw ∼ 10−12 at mHz

requires (H∗/β)(ρs/ρtot)∗ ≳ 10−4. Detectible signals only arise from slow and very

energetic processes.

For a 1st order PT there are three contribution to the source.

• Collisions of bubble walls and (where relevant) shocks in the plasma.

• Sound waves in the plasma after the bubbles have collided but before expansion

has dissipated the kinetic energy in the plasma.

• Magnetohydrodynamic (MHD) turbulence in the plasma forming after the bub-

bles have collided
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Figure 10. Example of a GW power spectrum for a thermal PT with vw = 0.44, α = 0.084,

H∗/β = 0.1 and T∗ = 180GeV. The power spectrum is compared to a sensitivity curv obtained

for a LISA-like configuration. Taken from 1705.01783.

The stochastic background is the sum of these processes

Ωgw = Ωϕ + Ωsw + Ωturb (4.81)

The bubble wall contribution is generically subdominant, it may only dominate for

supercooled/cold transitions, or for runaway bubble walls with a velocity approaching

the speed of light – in both cases the transfer of energy to the plasma is small. The

plasma will be accelerated and heated by the expanding bubble; the gravitational wave

signal will depend on the kinetic energy of the plasma. Hydrodynamica simulations

can give more accurate estimates than above. The input is a set of phenomenological

parameters describing the system. These are the temperature T∗ ≈ Tn, the bubble wall

velocity vw, and the time-scale of the transition β. In addition, parameters describ-

ing the energy content: the ratio of vacuum energy density released in the transition

compared to the total energy density in the plasma, and the fraction of vacuum energy

density that gets converted into bulk motion of the fluid and into gradient energy of

the Higgs field, important to determine the relevant contributions to the total signal.

α =
ρvac
ρrad

, κv =
ρv
ρvac

, κϕ =
ρϕ
ρvac

(4.82)

at the time of emission. Given an actual model, these parameters can then be mapped

to the Lagrangian parameters. For β, α this is rather straightforward, but it is much

harder to dermine the others, as they will depend on the bubble interactions with the

plasma.
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EW baryogenesis Redo Can the GW signal be used to test models of EW baryoge-

nesis? Unfortunately, this seems hard given sensitivity of upcoming experiments. The

GW signal is largest for strong transition with large, relativistic bubble wall velocities.

This maximises the energy that can be transferred to kinetic energy of the plasma,

available for GW production.

Baryogenesis on the other hand is most efficient for smaller bubble wall velocities

vv ∼ 0.1, the efficiency reduces fast for velocities larger than the sound speed in the

plasma cs = 1/
√
3. The reason is that the asymmetry between left-handed particles and

antiparticles is created in the bubble wall region where CP is violated. This assymmetry

has to defuse into the symmetric phase, where the sphaleron transition can convert it

in a baryon assymetry. If the bubble wall moves faster than the speed of sound, there

is no signifanct diffussion in the symmetric phase, as the particles are overtaken by the

bubble. Sphalerons have ample time to interact, and the baryon asymmetry will be

small. This gives an upper bound on the bubble wall velocity for efficient baryogenesis.

For very small velocities the system is at all times close to equilibrium and no large

assymetry is produced either.

A FLWR cosmology

Modern cosmology is grounded on the “cosmological principle”: nobody is at the center

of the universe, and the cosmos viewed from any point looks the same as from any

other point. It is the Copernican principle – we are not the center of the solar system

– taken to the extreme. It implies that the universe (on large scales) is isotropic

and homogeneous (as seen by a freely falling observer), and is invariant under spatial

translations and rotations. The cosmic microwave background (CMB) and large scale

structure surveys confirm the homogeneity and isotropy of the universe on large scales

> 100 Mpc (the observable patch of our universe is ∼ 3000Mpc).

An isotropic and homogenous universe is described by the Friedman-Robertson-

Walker (FRW) metric:

ds2 = −dt2 + a(t)2
[

dr2

(1− kr2)
+ r2

(
dθ2 + sin2 θdφ2

)]
= gµνdx

µdxν (A.1)

with a(t) the time-dependent cosmic scale factor. ds measures the proper distance

between two points in spacetime separated by dxµ. The constant k = −1, 0, 1 for an

open, flat, or closed universe respectively, corresponding to the 3-dimensional spatial

slices being hyperbolic surfaces, flat, or 3-spheres. To write the metric in the above

form, the freedom to redefine r → λr has been used to normalize |k| = 1 for curved

universes.
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{r, θ, φ} are called comoving coordinates, a particle initially at rest in these coordi-

nates remains at rest, i.e. {r, θ, φ} remains constant. The physical separation between

freely moving particles at (t, 0) and (t, r) is

d(r, t) =

∫
ds = a(t)

∫ r

0

dr√
1− kr2

= a(t)×


sinh−1 r, k = −1,

r, k = 0,

sin−1 r, k = 1.

(A.2)

Thus physical distances and wavelengths scale λ ∝ a, and momenta p ∝ a−1. The

distance increases with time in an expanding universe (ȧ > 0):

ḋ =
ȧ

a
d ≡ Hd, (A.3)

with H(t) the Hubble parameter or constant (to indicate it is independent of spacial

coordinates). The above is nothing but Hubble’s law: galaxies recede from each other

with a velocity that is proportional to the distance. Hubble’s law is borne out by

observations; the present day measured Hubble parameter is H0 ∼ 70 km/sec/Mp. A

subscript 0 denotes the present day value of the corresponding quantity.

A freely moving particle will eventually come at rest in comoving coordinates as its

momentum is red shifted p ∝ a−1 to zero. The expansion of the universe creates a kind

of dynamical friction for everything moving in it. It will be useful to define comoving

distance and momenta, with the expansion factored out, via

λcom = λphys/a(t), kcom = a(t)kphys. (A.4)

Motion w.r.t. comoving coordinates is called peculiar motion, it probes the local mass

density.

A photon emitted with wavelength λem from a distant galaxy is red shifted, and

observed at present with a longer wavelength λ0, given by

(1 + z) ≡ λem
λ0

=
a0(t0)

aem(tem)
, (A.5)

that is light with red shift (1+ z) was emitted when the universe was a factor (1+ z)−1

smaller. Another way to look at the effects is that from eq. (A.3) photons are red

shifted due to the recession velocity of the source.

A.1 Friedmann equation

In general relativity the metric is a dynamical object. The time evolution of the scale

factor in eq. (A.1) is governed by Einstein’s equations

Rµν −
1

2
Rgµν = 8πGNTµν (A.6)
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with R and Rµν the scalar curvature and Ricci curvature tensor respectively, which

are both complicated functions of the metric with up to two metric derivatives. We

will use units in which M2
P = (8πGN)

−1 = 1. The gravitational field, that is the

metric of spacetime, is sourced and curved by matter/energy. The energy-momentum

tensor is dictated by isotropy and homogeneity to be of the perfect fluid form T ν
µ =

diag(−ρ, p, p, p). Then Einstein’s equations reduce to two independent equations

H2 ≡
(
ȧ

a

)2

=
ρ

3
− k

a2
(Friedmann eq.) (A.7)

ä

a
= −1

6
(ρ+ 3p) (Raychaudhuri eq.) (A.8)

The Raychaudhuri equation can also be traded for the continuity equation

ρ̇ = 3H(ρ+ p) (continuity eq.) (A.9)

which encodes energy conservation; it can also be derived from ∇νT
µν = 0. Equa-

tion (A.9) can be viewed as the 1st law of thermodynamics:

dU = −pdV ⇒ d(ρa3) = −pd(a3). (A.10)

Introduce the equation of state parameter p ≡ ωρ. Then the continuity equation

can be integrated to give

dρ

ρ
= −3(1 + ω)

da

a
⇒ ρ ∝ a−3(1+ω) (A.11)

From eq. (A.7), neglecting the curvature term, it then follows

a ∝
{
t2/(3(1+ω)) ω ̸= −1

eHt ω = −1
(A.12)

This can be derived substituting a = tn and eq. (A.11) in eq. (A.7), to give (n/t)2 =

1/3t−3n(1+ω). This has the solution n = 2/(3(1+ω)) provided ω ̸= 1. For ω = −1 then

ρ = const. and eq. (A.7) has an exponential solution.

The matter in the universe consists of several fluids T ν
µ =

∑
i T

(i)ν

µ, with i =

{γ,M,Λ} for radiation, non-relativistic matter and vacuum respectively. If the energy

exchange between them is negligible, it follows that all fluids separately satisfy the con-

tinuity equation. We can define an equation of state parameter for each fluid separately

pi = ωiρi.

• Radiation includes all relativistic species, at present only photons (generically,

species are relativistic when m ≪ T ). For radiation ωrad = 1/3 and thus

eq. (A.11) gives ρrad ∝ a−4. If the universe is dominated by radiation, it fol-

lows from eq. (A.12) that the scale factor grows a ∝ t1/2.
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• Matter includes all non-relativistic or cold matter, at present baryons, dark matter

and neutrinos. For matter ωmat = 0 and thus ρM ∝ a−3. If the universe is

dominated by matter, the scale factor grows a ∝ t2/3.

• Vacuum energy (a cosmological constant) ρΛ with ωΛ = −1 remains constant in

time. If it dominates the universe a ∝ eHt.

Define Ωi = ρi/ρc with ρc = 3H2 the critical density. Then the Friedmann equation

eq. (A.7) becomes

Ω =
∑
i

Ωi = 1 +
k

(aH)2
(A.13)

Thus Ω is larger, equal, or smaller than unity for an open, flat or closed universe

respectively. From observations (CMB data, supernovae, large scale structure, lensing,

big bang nucleosynthesis(BBN)) we find for the present values

Ω− 1 ≊ 0, ΩB ≊ 0.05, ΩDM ≊ 0.27, Ωγ ≊ 8× 10−5, ΩΛ ≊ 0.68 (A.14)

with B and DM denoting baryons and dark matter. Visible matter only makes up a

very small part.

A.2 Thermal history

A species in thermal equilibrium has a phase space density given by the Bose-Einstein

and Fermi-Dirac distributions

f(p) =
1

exp (ω − µ)/T ∓ 1
(A.15)

with ω =
√

p2 +m2 the energy density, µ the chemical potential and the − (+) sign is

for bosons (fermions). If interactions rates A + B ↔ C +D is in thermal equilibrium

the chemical potentials are related µA+µB = µC+µD. The number and energy density

are given yb

n = g

∫
d3p

(2π)3
f(p), ρ = g

∫
d3p

(2π)3
E(p)f(p) (A.16)

with g the internal degrees of freedom.

For relativistic degrees of freedom T ≫ m this gives

n =
g

2π2
T 3

∫
y2

ey ∓ 1
dy =

gcn
π2

ζ(3)T 3, ρ =
g

2π2
T 4

∫
y3

ey ∓ 1
dy =

gπ2cρ
30

T 4 (A.17)

with cn = {1, 3
4
} and cρ = {1, 7

8
} for bosons and fermions. In the non-relativistic limit

T ≪ m and neglecting chemical potentials

n ≃ g
g

2π2
e−m/T (2mT )3/2

∫
x2e−xdx = g

(
mT

2π

)3/2

e−m/T (A.18)
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the same for bosons and fermions, and ρ = mn.

The radiation energy density can then be written as

ρr =
π2

30
g∗(T )T

4, (A.19)

with g∗ the relativistic dof in thermal equilibrium with the photons . During radition

domimation the Hubble constant scales as H2 = ρr/3 ∝ T 4. Another useful quantity

is the entropy density s = S/V = (E + pV)/T = (ρ + p)/T . For a relativistic species

p = ρ/3 and s = 4
3
(ρ/T ). The total entropy density is

s =
2π2

45
g∗S(T )T

3 (A.20)

with g∗S the dof contributing to the entropy (for species in thermal equilibrium g∗S =

g∗). Entropy conservation implies that

S = a3s ∝ g∗S(T )T
3a3 = const. ⇒ a ∝ (g∗ST )

−1 (A.21)

If no number densities are being created/destroyed the ratio Yi = ni/s remains constant,

and is therefore often used in Boltzmann equations.

Reaction drop out of equilibrium if the interaction rate becomes slow compared

to the Hubble constant Γ ≲ H, and interactions can no longer keep up with Hubble

expansion and less than one scattering in per Hubble time will occur. The interaction

rate for particle A in the reaction A+A→ X can be estimated as Γ ∼ nAσv with σ the

cross section and v the velocity of incoming particles (for relativistic particles v = 1).
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